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Abstract 
 
Human learning is a complex phenomenon that varies greatly among individuals and is related to the microstructure 
of major white matter tracts in several learning domains, yet the impact of the existing myelination of major white 
matter tracts on future learning outcomes remains unclear. We employed a machine-learning model selection 
framework to evaluate whether existing microstructure might predict individual differences in the potential for 
learning a sensorimotor task, and further, if the mapping between the microstructure of major white matter tracts 
and learning was selective for learning outcomes. We used diffusion tractography to measure the mean fractional 
anisotropy (FA) of major white matter tracts in 60 adult participants who then underwent training and subsequent 
testing to evaluate learning. During training, participants practiced drawing a set of 40 novel symbols repeatedly 
using a digital writing tablet. For testing, we measured drawing learning as the slope of draw duration over the 
practice session; we measured visual recognition learning as the performance accuracy in an old/new 2-AFC 
recognition task. We performed two separate analyses, one that assessed the relationship between pre-training FA 
and learning to draw novel symbols and a second that assessed the relationship between pre-training FA and 
learning to visually recognize symbols after training. Both analyses focused on the microstructure of white matter 
tracts that connect dorsal and ventral cortices, the posterior vertical pathway (PVP), as well as tracts within the 
dorsal motor system and within the ventral perceptual system. Results demonstrated that the microstructure of 
major white matter tracts selectively predicted learning outcomes, with left hemisphere pArc and SLF 3 tracts 
predicting drawing learning and the left hemisphere MDLFspl predicting visual recognition learning. These results 
were replicated in a repeat, held-out data set and supported with complementary analyses. Overall, results suggest 
that individual differences in the microstructure of human white matter tracts may be selectively related to future 
learning outcomes that arise from a single experience and open avenues of inquiry concerning the impact of existing 
tract myelination and individual differences in the potential for learning. 
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Associative white matter tracts selectively predict sensorimotor learning 
 
The structural architecture of the human brain contains large bundles of myelinated fibers called white 
matter tracts. The white matter tracts carry communications among cortical regions and functional 
components of the brain. Evidence from animal models suggest that these white matter bundles may be 
selectively related to human learning, such that the myelination of some bundles may be more related to 
learning a particular task than that of other bundles 1–3. Seminal work in a murine model demonstrated 
that myelination of major white matter tracts was necessary for behavioral changes, i.e., learning, 
following controlled stimulation of cortical activity 2. Similarly, in the murine model, myelination of major 
white matter tracts was necessary for learning that followed controlled behavioral training experiences 
1,3. Whether myelination followed cortical stimulation or behavioral training, myelination was necessary 
for learning and selective, meaning that it was promoted in some tracts but not others.  
 
As of today, selective myelination of white matter tracts in humans as a result of learning a particular task 
has been elusive. On the contrary, changes in white matter across multiple tracts is most often reported 
after training on a task, such as juggling or reading 4–11. For example, one significant study measured 
tract microstructure in children before and after an intensive reading intervention 11. Prior work from a 
variety of methodologies, including correlational, post-mortem anatomy, and case studies, suggested 
that the intensive reading intervention would promote microstructure changes in two specific white matter 
tracts: the Arcuate fasciculus (Arc) and the Inferior Longitudinal Fasciculus (ILF) 12–14. Instead, the study 
found non-specific, widespread changes across multiple tracts. Currently, the human literature comparing 
pre- and post-intervention white matter has not detected a tract-selective relationship between white 
matter and learning.  
 
A different approach to testing tract selectivity is investigating the relationship between current tract 
myelination and future learning outcomes. This approach exploits the existing myelination, which 
occurred over the course of the lifespan, instead of shorter-term experimental interventions. Studies 
taking this approach have demonstrated that the microstructure of white matter tracts can be used to 
predict future learning, such as semantic learning 15,16, foreign language learning 17, auditory tone learning 
18, visuomotor adaptation 19, and face-name learning 20. In each case, studies suggest that a relatively 
small, select group of tracts predicts learning, i.e., tract-selectivity, and that the tracts most predictive of 
learning one task may not also be most predictive of learning a second task, i.e., task-selectivity. Related 
work suggests that connectivity predicts learning sensorimotor tasks, such as learning to play novel piano 
sequences 21,22. Critically, studies testing the relationship between existing tract myelination and future 
learning outcomes have focussed on tracts of interest (investigating only one or a few tracts) and have 
often tested a single learning outcome (investigating a single task without testing transfer of learning 
across behaviors). As a result, current evidence for tract- and task-selectivity in humans remains 
inconclusive.  
 
Here, we tested tract-selectivity in humans learning a sensorimotor task using machine-learning and a 
model-selection framework. Instead of implementing a training protocol and measuring changes in white 
matter as a result of learning, we used the myelination that occurred over the course of the lifespan to 
predict future learning. We tested tract-selectivity by investigating the relationship between the 
microstructure of major white matter tracts (Figure 1a) and individual differences in performance on two 
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learning outcomes following a single sensorimotor training task (Figure 1b). Two learning outcomes were 
included so as to allow us to test the different task-selectivity of white matter tracts to different learning 
outcomes.  
 

 
Figure 1. Background and hypotheses. a. Major white matter tracts connect frontal, parietal, and temporal cortical regions 
that are active during drawing. Prior works have demonstrated that frontal activation is associated with motor movements 
during drawing symbols, temporal activation is associated with perceptual processing of the symbols produced, and parietal 
activation is associated with both motor and perceptual processing 30.  b. The posterior vertical white matter pathway is a 
structural pathway that likely supports communication between perception-oriented cortical regions in ventral-temporal cortex 
and more motor-oriented cortical regions in parietal and frontal cortices. Individual differences in the tissue properties of the 
posterior vertical white matter tracts are hypothesized to predict individual differences in learning to draw novel symbols and 
not visual recognition learning. SLF: superior longitudinal fasciculus; PVP: posterior vertical pathway; Arc: arcuate fasciculus; 
ILF: inferior longitudinal fasciculus; IFOF: inferior fronto-occipital fasciculus; MDLFspl: middle longitudinal fasciculus 
connection to the superior parietal lobe; MDLFang: middle longitudinal fasciculus connection to the angular gyrus; TPC: 
temporal to parietal connection; pArc: posterior arcuate fasciculus. 

 
Results 

 
We investigated the mapping between the microstructure of white matter tracts and two learning 
outcomes that arise from the same training experience to test both tract- and task-selectivity. We 
measured white matter microstructure in 60 adult participants who then completed a sensorimotor 
training task that required them to practice drawing a set of 40 novel symbols repeatedly using a digital 
writing tablet. After the training, participants were tested on their ability to visually recognize the 40 
symbols (Figure 2a). We estimated drawing learning by measuring the draw duration of each symbol 
drawing trial and calculating the slope of draw duration over the practice session (Figure 2b). We 
estimated visual recognition learning by measuring performance accuracy in an old/new 2-AFC visual 
recognition task. Accuracy was selected over reaction time because both metrics demonstrated learning 
and accuracy captured more individual variability than reaction time (see Supplementary Information).  
 
We employed relaxed-lasso (RL) methods 31,32 to specify a model to test the hypothesis that a selective 
group of white matter tracts predicts (in cross-validation terms) learning to draw novel symbols (Figure 
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2c). The RL method allows testing models where the best set of parameters (the tracts’ Fractional 
Anisotropy, or FA) is selected to best fit the data. Critically, RL does not guarantee identification of a 
small subset of tracts, but it is capable of selecting all tracts, if that provides the best fitting model 32. 
Furthermore, we used RL to test that a different group of tracts predicted learning to visually recognize 
the symbols. We conducted one RL regression to predict drawing learning and a second to predict visual 
recognition learning as an initial assessment of task-selectivity (see our third analysis for an additional 
test of task-selectivity) from the microstructure of white matter tracts.  
 
We directly tested a set of 22 white matter tracts that connect cortical regions known to support motor 
and sensory processing during symbol drawing 30,33–40 (Figure 1a). The Superior Longitudinal Fasciculus 
(SLF 1 and 2 combined, SLF 3) directly connects frontal and parietal cortices where neural processing is 
largely associated with motor planning and control, respectively 23. Within the ventral cortex where neural 
processing is largely associated with sensory perception, the Inferior Longitudinal Fasciculus (ILF) 
directly connects occipital and temporal cortices 24,25, the inferior fronto-occipital fasciculus (IFOF) 
connects occipital and prefrontal cortices 24,26,27. Between the dorsal motor and ventral perceptual 
cortices, the arcuate fasciculus (Arc) and the posterior vertical pathway (PVP) directly connect the ventral 
perceptual cortex with the dorsal motor cortex. The Arc directly connects temporal and frontal cortices 
28,29; the PVP directly connects temporal and parietal cortices and might be better thought of as a 
collection of four tracts: the posterior arcuate (pArc), the temporal to parietal connection to the superior 
longitudinal fasciculus (TPC), the middle longitudinal fasciculus to the angular gyrus (MDLFang), and the 
middle longitudinal fasciculus to the superior parietal lobe (MDLFspl) 30. We also included three additional 
vertical tracts, one in the posterior cortex (VOF) and one in the anterior cortex (FAT). The left and right 
hemispheres were kept separate for each of these 11 tracts, for a total of 22 white matter tracts tested.  
 
We tested our hypothesis that pre-training PVP white matter would predict drawing learning in three ways 
(Figure 2c). In the first analysis, we sought to demonstrate that the microstructure of PVP tracts was 
predictive of learning, more so than other tracts, i.e., tract-selectivity. To do this, we specified an initial 
model that we called the original drawing learning model using a RL regression to select a set of white 
matter tracts that explained the most variance in drawing learning. In the second analysis, we 
constructed a second model that we called the original recognition learning model using a second RL 
regression to select tracts that explained the most variance in visual recognition learning, more so than 
other tracts, i.e., tract-selectivity. In the third analysis, we sought to directly test that the tracts identified 
for drawing learning were selective for drawing, i.e., task-selectivity. To do this, we evaluated whether 
the relationship between pre-training white matter microstructure and drawing learning would translate to 
a second learning outcome, namely visual recognition learning. All analyses were also conducted with a 
more extended set of tracts using an exploratory approach, however we found results consistent with the 
theory-driven selection of 22 tracts. We report the results of the theory-driven analysis in the main text 
and provide the results of the exploratory approach in Supplementary Information. Additionally, we 
report a complementary analysis using simple (marginal) linear regressions in Supplementary 
Information to evaluate the ability of the microstructure of any tract to independently predict each 
learning outcome. 
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Figure 2. Experimental procedure, measurements, and modeling approach. a. Overall procedure. All participants 
completed an MRI session before completing a session of drawing training and recognition testing. On Day 1, diffusion MRI 
data were collected at the in order to perform diffusion tractography and estimate tissue microstructure. On Day 2, participants 
completed 30 minutes of drawing training, including 40 novel symbols each drawn 10 times in random order (drawing training) 
followed by an old/new 2-AFC visual recognition test (recognition testing). b. Calculations of white matter and learning 
measurements. First, a measurement of mean fractional anisotropy (FA) was obtained for each tract using a tractprofiles 
approach and averaging across the tract profile. Second, a measurement of drawing learning was obtained by estimating the 
linear slope of draw duration over trials. Third, a measurement of visual recognition learning was obtained by estimating the 
proportion of correct responses on the visual recognition test. The white matter measurements on day 1 were then used to 
predict the measurements of drawing learning and visual recognition learning on day 2. c. Modeling approach. A relaxed lasso 
regression was used to identify the group of tracts that was most predictive of individual differences in drawing learning and, 
separately, most predictive of visual recognition learning. After predictors were selected for drawing learning and for visual 
recognition learning separately, we tested to see if the drawing learning model transferred to visual recognition learning 
(Transfer model). We found that the Transfer model was worse at predicting visual recognition learning than the model 
selected for visual recognition learning (Original model), demonstrating task-selectivity because the model selected for 
learning to draw symbols did not also predict learning to visual recognize symbols. 
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First analysis: Predicting drawing learning from the microstructure of major white matter tracts. 
We used a RL and model-selection via cross-validation to identify the subset of white matter tracts that 
best predicted sensorimotor learning, i.e., drawing learning. We hypothesized that the microstructure of 
PVP tracts prior to learning would predict learning to draw novel symbols more than tracts within the 
dorsal motor system and tracts within the ventral perceptual system. Our hypothesis was based on prior 
works that have demonstrated a correlation between PVP microstructure and drawing 41 and the unique 
connectivity profile of the PVP tracts 29. PVP tracts are situated in an anatomical position that suggests 
importance for performing tasks that link motor production and perceptual knowledge. The four PVP 
tracts directly connect dorsal parietal regions associated with the motor movements of symbol production 
and ventral cortical regions associated with visual perceptual processing of symbols (Figure 1a) 29,30,42. 
 
The results of our first analyses demonstrated tract-selectivity: the left pArc and left SLF3 selectively 
predicted learning to draw novel symbols while the left MDLFspl selectively predicted learning to visually 
recognize those symbols. The RL analysis selected the tracts that, together, explained the most variance 
in drawing learning using a leave-one-out cross-validation model selection procedure 31,32. We included 
22 potential predictors in the lasso regression, including the microstructure of each PVP tract (pArc, TPC, 
MDLF-ang, MDLF-spl) as well as tracts within the dorsal cortex (SLF 1 and 2 combined as one tract, SLF 
3) and tracts within ventral cortex (ILF, IFOF). We also included three additional vertical tracts, one in the 
posterior cortex (VOF) and one in the anterior cortex (FAT) and the arcuate fasciculus (Arc), for a total of 
22 potential predictors that correspond to 22 white matter tracts (11 left and 11 right hemisphere). Results 
of the RL analysis supported our hypothesis: individual differences in the microstructure of PVP white 
matter tracts predicted drawing learning, specifically the left pArc but also the left SLF 3 (Table 1; Figure 
3a). The microstructure of both tracts positively predicted drawing learning, and this result was replicated 
in a held-out dataset (Table 1) and in complementary marginal linear regressions (see Supplementary 
Information).   
 
The RL regression optimized to predict drawing learning revealed that two left hemisphere tracts 
selectively predicted drawing learning: the left pArc and left SLF 3 (Table 1; Figure 3a). These two tracts 
were selected from 22 potential tracts from multiple competing models 32, suggesting tract-selectivity. 
With drawing learning as the dependent variable, the winning model included only the left pArc and the 
left SLF3, with a cross-validated model R2 = 0.4799 and adjusted R2 = 0.1570. This result was replicated 
in a held-out, repeat dataset: left pArc and the left SLF 3, with a cross-validated model R2 = 0.4582 and 
adjusted R2 = 0.1220. The relationships between the microstructure of the left pArc and left SLF3 were 
positive, such that participants with higher FA in those tracts were participants who were the quickest at 
learning to draw the novel symbols. 
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Figure 3. Associative white matter tracts selectively predict learning. a. Drawing learning. The left pArc and left SLF 3 
selectively predicted drawing learning. A relaxed lasso (RL) regression analysis selected the left pArc and left SLF 3 from a 
set of 22 potential tracts as the tracts that explained the most variance in drawing learning after training using a leave-one-
out cross-validation model selection procedure b. Visual recognition learning. A second RL regression revealed that the left 
MDLFspl predicted visual recognition learning. c. Task-selectivity. A transfer model was constructed that used the tracts 
selected for predicting drawing learning (a), the left pArc and left SLF 3, to predict visual recognition learning. A Cox test and 
a J-test both confirmed that the model selected for drawing learning did not transfer to predicting a second learning outcome, 
i.e.., visual recognition learning. The Cox test demonstrated that the original recognition learning model was a better fit than 
the transfer model to predict visual recognition learning. The J-test demonstrated that combining the transfer and original 
recognition models to predict visual recognition learning resulted in a model fit that was not significantly better than the original 
recognition model. SLF 3: third segment of the superior longitudinal fasciculus; pArc: posterior arcuate; MDLFspl: middle 
longitudinal fasciculus connection to the superior parietal lobe. 

 
Second analysis: Predicting visual recognition learning from the microstructure of major white 
matter tracts. A RL regression was also performed to predict visual recognition learning from the 
microstructure of pre-training white matter tracts (Figure 2b). Based on evidence from functional 
neuroimaging that indicated that the distribution of function across cortex during visual perception of 
known symbols was similar to the distribution of function while drawing symbols 33,43–45, our hypothesis 
for the white matter tracts that would significantly predict visual recognition was the same as our 
hypothesis for the tracts that would significantly predict drawing learning: we expected that tracts within 
the posterior vertical pathway would predict visual recognition learning.  
 
An RL model was specified that predicted visual recognition learning (accuracy) given the 22 predictors 
previously used to select the model for drawing learning. Results of the RL analysis supported our 
hypothesis: individual differences in the microstructure of PVP white matter tracts predicted visual 
recognition learning, specifically the left MDLFspl (Figure 3b). Using the original dataset, two left 
hemisphere tracts were selected with a cross-validated model to predict visual recognition learning: left 
MDLFspl and left TPC (R2 = 0.4601 and adjusted R2 = 0.1250) (Table 1). This result was partially 
replicated in the held-out dataset; the same analysis applied to the repeat dataset identified only the left 
MDLFspl, with a cross-validated model R2 = 0.3511 and adjusted R2 = 0.0516. The results of the simple 
(marginal) linear regressions did not reveal a significant relationship between the microstructure of the 
left MDLFspl and visual recognition learning for any individual tract (see Supplementary Information). 
The only tract identified in both the original and repeat dataset was the left MDLFspl. In both analyses 
the relationship was negative, such that participants with higher FA in the left MDLFspl were participants 
who were the slowest at learning to draw the novel symbols.  
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Table 1. Models selected for each learning outcome using relaxed lasso regression. 
Response Variable Predictor β S.E. R2 Adj. R2 

Drawing learning Left pArc  0.2118 0.2654 0.1180 0.0788 
 Left SLF3 0.1772 0.2600 - - 
      
Drawing learning (repeat dataset) Left pArc 0.1968 0.2517 0.0969 0.0568 
 Left SLF3 0.1448 0.2569 - - 
      
Visual recognition learning Left MDLFspl -0.6290 1.4424 0.0662 0.0247  
 Left TPC -0.4025  1.1971 - - 
      
Visual recognition learning (repeat dataset) Left MDLFspl -0.7562 1.4981 0.0416 0.0208 
 
Third analysis: Directly testing the task-selectivity of major white matter tracts for drawing 
learning. Our third analysis tested the selectivity of the tracts identified as the best predictors for drawing 
learning to drawing. Drawing and visual recognition learning were two different learning outcomes that 
occurred during the same sensorimotor training session and, therefore, make for a strong test of 
selectivity to learning outcomes. We hypothesized that the relationship between white matter and 
individual differences in drawing learning would not transfer to individual differences in visual recognition 
learning, that tracts predictive of drawing learning would be selective for drawing.  
 
We tested task-selectivity by, first, constructing a new model that we will call the transfer model. The 
transfer model was a linear model that included only the two predictors selected by the relaxed lasso 
regression as explaining the largest amount of variance in drawing learning, the left pArc and the left SLF 
3, but fit these two predictors to a different dependent measure, visual recognition learning. The original 
recognition model was a linear model that included only the predictors selected by the relaxed lasso 
regression as explaining the largest amount of variance for visual recognition learning, including the left 
MDLFspl and left TPC for the initial dataset and the left MDLFspl for the repeat held-out dataset. Crucially, 
the transfer and the original recognition learning models both used visual recognition as the dependent 
variable. We compared the predictive strength of the transfer model to that of the original visual 
recognition model using a Cox test and a J-test for non-nested models (Figure 2c) 46. If the transfer 
model is much worse at predicting visual recognition learning than the original recognition model, such a 
result would suggest that the drawing learning model does not transfer to visual recognition learning. On 
the other hand, if the transfer model is just as good or better than the original recognition model, such a 
result would suggest that the tracts selected as most predictive of drawing learning are not likely specific 
to drawing. 
 
Results suggest that the relationship between white matter and drawing learning did not transfer to visual 
recognition learning, and vice versa (Figure 3c). The Cox-test demonstrated that the original recognition 
model (left MDLFspl, left TPC) was a better fit for visual recognition learning than the transfer model (left 
pArc, left SLF 3), z = -3.3122, p = 0.0009. Similarly, the transfer model (left pArc, left SLF 3) was not a 
better fit for visual recognition learning than the original recognition model (left MDLFspl, left TPC), z = 
0.1382, p = 0.8901. Similarly, results in the held-out repeat dataset were similar, z = 0.2548, p = 0.7988 
and z = 5.4093, p = 6.3x10-8, respectively. Results of the J-test were consistent with the results of the 
Cox test and revealed that combining the transfer and original recognition models to predict visual 
recognition learning resulted in a model fit that was not significantly better than the original recognition 
model fit, t = 0.227, p = 0.821. On the other hand, combining the transfer and original recognition models 
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to predict visual recognition learning resulted in a model fit that was better than the transfer model fit, t = 
1.686, p = 0.099. Results in the held-out repeat dataset were similar, t = 0.2169, p = 0.8293 and t = 
1.5153, p = 0.1368, respectively. The Cox and J-test results both suggest that models originally selected 
for drawing learning and visual recognition learning in the RL regression analyses were not transferable 
to a second learning outcome, indicating selectivity between tracts and learning outcomes. 
 

Discussion 
 
The current work employed a machine-learning model selection approach to demonstrate selectivity of 
the mapping between the existing microstructure of major white matter tracts and future learning 
outcomes. We used diffusion measurements of white matter tissue that occurred over the lifespan to 
predict individual differences in two learning outcomes that arose from a single sensorimotor training 
task. The sensorimotor training task consisted of drawing symbols that were previously unknown and the 
two learning outcomes included: learning to draw the novel symbols and learning to visually recognize 
those symbols. Results suggest that two left hemisphere white matter tracts, the left pArc and the left 
SLF 3, selectively predicted individual differences in learning to draw novel symbols but not learning to 
visually recognize those same symbols. The relationship between the pre-training microstructure of the 
left pArc and left SLF 3 and drawing learning was found using two independent datasets and two separate 
statistical analyses (see Results and Supplementary Information). The relationship between pre-
training microstructure and visual recognition learning varied marginally depending on the dataset and 
statistical analysis but suggested that the pre-training microstructure of the left MDLFspl selectively 
predicted visual recognition learning. Overall, results suggest that individual differences in the 
microstructure of human white matter tracts are selectively related to learning outcomes that arise from 
a single experience. 
 
The current work is the first, to our knowledge, to demonstrate a selective mapping between major white 
matter tracts and human learning. Tract-selectivity has recently been demonstrated in the murine model 
1–3, yet evidence for tract-selectivity in humans has remained inconclusive 4–14. Furthermore, few studies 
have tested the mapping between white matter tracts and multiple learning outcomes, leaving the current 
literature unable to conclude that some tracts are more related to learning than other tasks (tract-
selectivity) and more related to learning one task than other tasks (task-selectivity) 15–22. Our results add 
to prior human work that observed widespread changes across multiple white matter tracts during an 
intensive intervention 11. Although interventions often target one learning outcome (e.g., reading), they 
often impart learning in other domains that are not directly targeted (e.g., attention, social interactions). 
The onset of an intensive intervention might promote widespread changes 11 and our results suggest that 
only a few of those changes are related to the targeted learning outcome. By using tract microstructure 
to predict future learning and assessing more than one learning outcome, our results demonstrate a 
selective mapping between white matter tracts and learning outcomes that likely emerges over time 
periods much longer than is feasible for interventions.  
 
Two independent analyses demonstrated that the microstructure of two left hemisphere white matter 
tracts selectively predicted drawing learning: the left pArc and the left SLF 3. The first analysis tested 
tract-selectivity using a relaxed lasso regression to identify a group of white matter tracts that, together, 
predicted drawing learning from a set of 22 potential tracts. Each tract entered into the regression was 
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selected based on its unique anatomical connectivity in relation to the functional responses observed 
during drawing in prior works 30,34,35,37,38, including SLF 1 and 2 (combined), SLF 3, pArc, TPC, MDLFspl, 
MDLFang, Arc, ILF, IFOF, VOF, and FAT in the left and right hemispheres. The relaxed lasso analysis 
indicated that the left SLF 3 in dorsal cortex and the left pArc in the PVP comprised the group of tracts 
that explained the most variance in drawing learning (see Results). The second analysis tested the task-
selectivity of the drawing learning model (i.e., the left pArc and left SLF 3) for drawing by evaluating the 
model’s prediction strength when predicting a second learning outcome, visual recognition. Results 
revealed that the drawing learning model did not transfer to visual recognition learning, suggesting a 
degree of task-selectivity between the microstructure of the left pArc and left SLF 3 and drawing learning. 
Furthermore, results from both analyses were replicated in a held-out repeat dataset, providing strong 
evidence that individual differences in the microstructure of the left pArc and left SLF 3 are selectively 
related to individual differences in learning to draw novel symbols.  
 
Both white matter tracts selected to predict drawing learning were in the left hemisphere, suggesting that 
learning to draw novel symbols might be supported by left-lateralized communications conveyed along 
the pArc and SLF 3, consistent with evidence of left-lateralization of functional processes during drawing. 
Literate adults engage a left-lateralized cortical system during drawing, including regions within the frontal 
motor, parietal, and ventral temporal lobes 30,33–35,37–39,47,48, and these regions are joined by the left pArc 
and left SLF 3 27,29,49. Furthermore, work in children has demonstrated that the pArc is correlated with 
individual differences in drawing ability in the left but not the right hemispheres, even after controlling for 
age 41. We and others 43,50,51 have suggested that the left-lateralization of white matter supporting drawing 
learning may be related to the left-lateralization of language processing. In the current study, participants 
drew symbols that resembled letters of the Roman alphabet and might have relied on the white matter 
architecture that had been optimized for drawing through extensive life experiences with handwriting 
letters of the alphabet, an unmistakably language-oriented task. Comparing tract-selectivity in literate and 
non-literate adults might provide further support for the role of life experiences in adaptive myelination of 
major white matter tracts that underlie cortical communications during specific learning experiences. 
 
The arcuate fasciculus (Arc) is often segmented into three white matter tracts that allow for at least two 
different communication pathways, including a long segment (connecting temporal and frontal cortices), 
an anterior indirect segment (connecting parietal and frontal cortices), and a posterior segment 
(connecting parietal and temporal cortices) 27,28. This segmentation is of great interest to language and 
reading research because it allows for at least two neural communication pathways during language-
oriented tasks: the direct and indirect pathways. The direct pathway is the long segment because it 
directly connects processing for language perception, such as graphemes (i.e., visual symbols), thought 
to occur in the temporal cortex with motor processing for language production, such as pronouncing 
phonemes (i.e., symbol sounds) or writing graphemes (i.e., symbol writing), thought to occur in the frontal 
motor cortex 27. The indirect pathway accomplishes the same connection between perceptual and motor 
processing but does so indirectly by passing through the parietal cortex. Our results demonstrate that the 
indirect pathway and not the direct pathway, are predictive of drawing learning. The left pArc and left SLF 
3 are effectively the two most posterior segments of the Arc that comprise the indirect pathway 27–29,52,53. 
The SLF 3 is essentially one and the same with the anterior indirect segment of the Arc 52–54 and the pArc 
is essentially one and the same with the posterior segment of the Arc 29,54. Our results suggest that 
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parietal involvement might be especially important for drawing learning because we found that the two 
tracts of the indirect pathway of the Arc selectively predicted drawing learning.  
 
The current work suggests that segmenting the PVP into four white matter tracts may reveal unique 
relationships with behavior and cortical functioning. The PVP can be segmented into four white matter 
tracts, however the necessity to segment the PVP into these four white matter tracts has not yet been 
determined. For example, one study reported no difference in the developmental trajectory of the 
microstructure of the PVP tracts 41. Our results demonstrated that the MDLFspl and pArc selectively 
predicted different learning outcomes that arose from the same training task. While the MDLFspl 
predicted visual recognition learning, the pArc predicted drawing learning. Our results are in line with 
work on the functional mappings in ventral-temporal and parietal cortex. The MDLFspl connects the 
anterior ventral-temporal cortex with the superior parietal lobe (SPL) where processing is largely 
associated with visual attention 55; the pArc connects the posterior ventral-temporal cortex with the inferior 
parietal lobe (IPL) where processing is largely associated with visually-guided actions with the hands 56. 
Thus, the MDLFspl may predict visual recognition learning by supporting communication between 
perceptual processing in anterior ventral-temporal cortex and visual attention in the SPL while the pArc 
may predict drawing learning by supporting communication between perceptual processing in posterior 
ventral-temporal cortex and visual processing for hand actions in the IPL. Future work will be necessary 
to disentangle the mapping between tracts within the PVP and learning. 
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Methods 
 
Participants 
 
Adult participants (18-30 yrs., n = 60) were recruited through flyers posted on the Indiana University 
campus, online e-flyers, and through word-of-mouth. All participants were screened for neurological 
trauma, developmental disorders, and MRI contraindications. All participants were right-handed with 
English as their native language. Participants were compensated with a gift card for each session that 
they commenced. Data from participants were removed based on signal-to-noise (SNR), motion 
concerns, or other artifacts (see Magnetic resonance imaging data analyses) and, additionally, data 
from participants whose performance during training and/or testing revealed a lack of engagement were 
removed (see Learning rate calculations), leaving 48 subjects (age: M = 21.21 years, SD = 2.49 years, 
Range = [18.25, 29.75], 26 F, 22M). All participants provided written informed consent and all procedures 
were approved by the Indiana University Institutional Review Board.  
 
Magnetic resonance image acquisition and procedure 
 
Neuroimaging was performed at the Indiana University Imaging Research Facility, housed within the 
Department of Psychological and Brain Sciences with a 3-Tesla Siemens Prisma whole-body MRI using 
a 64-channel head coil. Participants were instructed to stay as still as possible during scanning and were 
allowed to watch a movie or listen to music of their choice during scanning.  
 
T1-weighted anatomical volumes (i.e., t1w) were acquired using a Wave-CAIPI MP-RAGE pulse 
sequence (TR/TI/TE = 2300/900/3.47 ms, flip angle = 8°, acceleration factor = 3 in phase encoding 
direction x 3 in slice-selective direction, scan time = 1'14"), resolution = 1 mm isotropic. The T2-weighted 
anatomical volumes (i.e., t2w) were acquired with a 3D Wave-CAIPI pulse sequence (TR/TI/TE = 
2300/900/3.47 ms, flip angle = 8°, acceleration factor = 3 in the phase encoding direction x 3 in slice-
selective direction, scan time = 1'15"), resolution = 1 mm isotropic.  
 
Diffusion data were collected using single-shot spin echo simultaneous multi-slice (SMS) EPI (transverse 
orientation, TE = 87.00 ms, TR = 3470 ms, flip angle = 78 degrees, isotropic 1.5 mm resolution; FOV = 
LR 210 mm x 192 mm x 138  mm; acquisition matrix MxP = 140 x 128. SMS acceleration factor = 4, 
interleaved). Diffusion data were collected at two diffusion gradient strengths, with 38 diffusion directions 
at b = 1,000 s/mm2 and 37 directions at b = 2,500 s/mm2, as well as 5 images at b = 0 s/mm2, once in 
the AP fold-over direction (i.e., dwi-AP) and once in the PA fold-over direction (i.e., dwi-PA).  
 
Within-session repeat scans were collected for each data type to ensure test-retest repeatability. For 
each participant, we collected two T1-weighted anatomical images, two T2-weighted anatomical images, 
two diffusion weighted images with AP phase-encoding, and two diffusion weighted images with PA 
phase-encoding. 
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Magnetic resonance imaging data analyses 
 
All analysis steps were performed using open and reproducible cloud services on the brainlife.io platform 
57 except for the statistical analyses (see below) that were performed in Matlab R2019b using customized 
code. All data and analysis services are freely available on brainlife.io (Table 2). The code for the relaxed 
lasso regression is available here: https://github.com/svincibo/learning-white-matter. The code for all 
other statistical analyses is available here: https://github.com/svincibo/wml-wmpredictslearning. 
 
Table 2. Data, description of analyses, and web-links to the open-source code and open cloud services used in the creation of 
this dataset can be viewed in their entirety here: https://doi.org/10.25663/brainlife.pub.36. 
 Application  Github repository  Open Service DOI  Git Branch 
Align T1 to ACPC Plane 
(HCP-based) https://github.com/brain-life/app-hcp-acpc-alignment doi.org/10.25663/bl.app.99 1.4 

Align T2 to ACPC Plane 
(HCP-based) https://github.com/brain-life/app-hcp-acpc-alignment doi.org/10.25663/brainlife.app.116  1.4 

Freesurfer Segmentation https://github.com/brainlife/app-freesurfer doi.org/10.25663/brainlife.app.462  7.1.1 

dMRI Preprocessing  https://github.com/brain-life/app-mrtrix3-preproc doi.org/10.25663/bl.app.68 1.7 

NODDI model fitting https://github.com/brainlife/app-noddi-amico doi.org/10.25663/brainlife.app.365 1.3 

t1/t2 fitting https://github.com/brainlife/app-myelin-mapping doi.org/10.25663/brainlife.app.478 t1-t2-ratio-v1.0 

Denoise mp2rage UNI-T1 https://github.com/svincibo/app-mp2rage-denoiseUNI doi.org/10.25663/brainlife.app.506 main 

Compute T1 and R1 Maps https://github.com/svincibo/app-mp2rage-computeT1andR1 doi.org/10.25663/brainlife.app.514 main 

Tractography and DK model 
fitting  https://github.com/brain-life/app-mrtrix3-act doi.org/10.25663/brainlife.app.319  1.4 

Tract Segmentation https://github.com/brainlife/app-wmaSeg doi.org/10.25663/brainlife.app.188 3.9 

Tract Cleaning https://github.com/brainlife/app-removeTractOutliers doi.org/10.25663/brainlife.app.195 1.3 

Tract Analysis Profiles https://github.com/brain-life/app-tractanalysisprofiles doi.org/10.25663/brainlife.app.361  1.13 

Tract Statistics https://github.com/brainlife/app-tractographyQualityCheck doi.org/10.25663/brainlife.app.189 1.3 

Cortex Tissue Mapping https://github.com/brainlife/app-cortex-tissue-mapping doi.org/10.25663/brainlife.app.381 v1.3-snr-input 

Generate Tract Endpoint 
Maps https://github.com/brainlife/app-endpointMapGeneration doi.org/10.25663/brainlife.app.194 1.0 

Extract Measures from Tract 
Endpoints https://github.com/brainlife/app-cortex-tissue-mapping-stats doi.org/10.25663/brainlife.app.437 endpoints-v1.1 

 
Anatomical images were aligned to the ACPC plane with an affine transformation using HCP 
preprocessing pipeline 58 as implemented in the Align T1 to ACPC Plane (HCP-based) app on brainlife.io 
59 for t1w images and as implemented in the Align T2 to ACPC Plane (HCP-based) app on brainlife.io 59 
for t2w images. ACPC aligned images were then segmented using the Freesurfer 6.0 60 as implemented 
in the Freesurfer App on brainlife.io 61 to generate the cortical volume maps with labeled cortical regions 
according to the Destrieux 2009 atlas 62.  
 
All diffusion preprocessing steps were performed using the recommended MRtrix3 preprocessing steps 
63 as implemented in the MRtrix3 Preprocess App on brainlife.io 64. AP phase-encoded and PA phase-
encoded images were combined first and susceptibility- and eddy current-induced distortions as well as 
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inter-volume subject motion were also corrected in this step. PCA denoising and Gibbs deringing 
procedures were then performed and the volumes were subsequently corrected for bias field and rician 
noise. Finally, the preprocessed dMRI data and gradients were aligned to each participant’s ACPC-
aligned anatomical image using boundary-based registration (BBR) in FSL 65. 
 
Diffusion data were removed from the sample if the Signal-to-Noise Ratio (SNR) was less than 15 or if 
the Framewise Displacement (FD), a widely used measurement of head movement 66,67, was greater 
than 2 mm or if an artifact was apparent. This resulted in a removal of 6 participants. 
 
The microstructural properties of white matter tissue were estimated in a voxel-wise fashion based on 
preprocessed multi-shell dMRI data. We fit two separate models to the diffusion data: the diffusion 
kurtosis model (DKI) to the diffusion data to estimate the fractional anisotropy (FA), a summary measure 
of tissue microstructure that is thought to be related to the integrity of the myelin sheath 68–70. 
 
Probabilistic tractography (PT) was used to generate streamlines. We used constrained spherical 
deconvolution (CSD) to model the diffusion tensor for tracking 71,72. Tracking with the CSD model fit was 
performed probabilistically, using the tractography procedures provided by MRtrix3 Anatomically-
constrained Tractography (ACT; 73–75 implemented in brainlife.io 76. We generated 2 million streamlines 
at Lmax = 8 and a maximum curvature = 35 degrees, parameters that were optimized for our tractography 
needs. Streamlines that were shorter than 10 mm or longer than 200 mm were excluded. The tractogram 
was then segmented using the segmentation approach developed in 29 and implemented on brailife.io 77. 
All the files containing the processed data used in this manuscript are available here: 
https://doi.org/10.25663/brainlife.pub.36. 
 
Streamlines that were more than 4 standard deviations away from the centroid of each tract and/or 4 
standard deviations away from the relevant tract’s average streamline length were considered aberrant 
streamlines and were removed using the Remove Tract Outliers App on brainlife.io 23,78.  
 
Tract-profiles were generated for each major tract 23 as well as the additional PVP tracts 29 using the 
Tract Analysis Profiles app on brainlife.io 79. We first resampled each streamline in a particular tract into 
200 equally spaced nodes. At each node, we estimated the location of the tract’s ‘core’ by averaging the 
x, y, and z coordinates of each streamline at that node. We then estimated FA at each node of the core 
by averaging across streamlines within that node weighted by the distance of the streamline from the 
‘core’. An average white matter measurement was obtained for each tract of interest by averaging across 
the central 160 nodes, excluding the first and last 20 nodes to avoid partial voluming effects.  
 
Behavioral procedures 
 
Participants were asked to return for a behavioral session within one week of the neuroimaging session 
(Figure 2). During the behavioral session, participants first performed a 30-minute training session (i.e., 
Drawing training) followed by a visual recognition test (i.e., Visual recognition testing). An experimenter 
remained in the room with the participant throughout the behavioral session that was completed within 
one hour. Code for behavioral procedures can be found here: https://github.com/svincibo/wml-beh.  
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Stimuli included 200 novel symbols. Using novel, unfamiliar symbols is a well-documented approach that 
controls for individual differences in pre-training symbol knowledge (James & Atwood, 2008; Kersey & 
James, 2013; Longcamp et al., 2006, 2008) and allows for a cleaner manipulation of visual, auditory, and 
motor experience with those symbols. The design and selection criteria for these symbols is described 
in detail elsewhere (Vinci-Booher, James, & James, 2021). The training required 40 symbols and the 
visual recognition test required an additional 40 distractor symbols, for a total of 80 symbols. The other 
160 symbols were used for counterbalancing; the set of 80 symbols selected for each participant was 
counterbalanced across participants. Adobe Illustrator was used to create typed versions of these novel 
symbols. All symbols were in ‘typed’ form in black ink on a white background.  
 
Drawing training: When participants arrived, they were seated at a desk with a digital Wacom writing 
tablet. Participants were asked to copy novel symbols using the tablet and instructed to make their 
productions as quickly and as accurately as possible. A Matlab script displayed one of the typed symbols 
at the top and center of the tablet screen and a box simultaneously appeared below the symbol into which 
participants were instructed to make their production of the symbol above. Only one symbol was 
displayed per trial and each trial lasted 4 seconds. Each block included 40 symbols and there were 10 
back-to-back blocks, each containing the same 40 symbols. After completing 5 blocks, participants were 
given a mandatory 3-minute break to rest their hands and eyes before completing the final 5 blocks. The 
ordering of symbols within each block was randomized. Production duration time was measured for each 
symbol production trial as the number of seconds between the initial pen-down to the final pen-up. 
 
Visual recognition testing: Participants were asked to perform an old/new recognition test immediately 
following the training session using an iMac computer and standard keyboard with a key labeled ‘yes’ 
and a different key labeled ‘no’. Participants first performed a practice session that consisted of individual 
letters of the alphabet and common shapes (e.g., square, triangle) and the participants were asked to 
press ‘yes’ for letters and ‘no’ for non-letters. The practice test helped orient participants to the testing 
context and lasted approximately 2 minutes. After the practice test, participants began the recognition 
test. During recognition testing, participants were presented with static, typed versions of the 40 learned 
symbols (i.e., target symbols) along with 40 symbols that were not presented to them during training (i.e., 
distractor symbols), one at a time and in random order. For each symbol, they were instructed to press 
‘yes’ for symbols that they had practiced during training and ‘no’ for non-practiced symbols. Each trial 
consisted of only one symbol. Each trial began with a 500 ms fixation cross, followed by a 500 ms blank 
screen, and then a 25 ms stimulus presentation during which a stationary symbol was displayed in the 
center of the screen. After the stimulus presentation ended, the symbol was replaced by a noise mask 
until the participant responded or until the trial timed-out. Each trial timed-out after 1 second when 
participants received feedback that prompted them to respond faster in the next trial (i.e., “Too Slow!”). If 
the participant responded before the symbol was replaced by the noise mask, the program advanced to 
the blank screen until the trial time-out criteria was met before moving on to the next trial. Trials that 
reached the time-out limit were re-presented at the end of the test. Only trials with a participant response 
(i.e., trials that did not reach the 1-second time-out limit) were used for analyses. Reaction time and 
accuracy were measured.  
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Learning calculations 
 
Drawing learning: Learning rate of the sensorimotor task was calculated by first measuring the amount 
of time it took a participant to draw a novel symbol, i.e., the draw duration, and plotting this measurement 
across trials (Figure 2b). Trials with a draw duration of 3 standard deviations above or below the within-
participant mean were identified as outlier trials and removed. We tested both linear and double 
exponential models to model the change in draw duration over trials, given that both models have been 
used in the literature to model learning 21. The double exponential models returned fits that were 
effectively linear despite aggressive efforts at bounding the fits and the linear fits were good fits across 
participants. The learning rate was calculated for each of the 40 target symbols over the 10 trials as the 
linear slope of draw duration per symbol over trials. The final learning rate for each participant was 
calculated by taking the median slope across target symbols for that participant.  
 
Visual recognition learning: Learning to visually recognize each symbol was calculated as the accuracy 
during visual recognition testing. Learning to visually recognize can be measured by their post-training 
recognition performance because participants were being tested on novel symbols that they had not been 
exposed to before they began drawing training. Participants with a visual recognition accuracy of 50% or 
lower, indicating that they were not performing above chance, were removed, resulting in the removal of 
2 participants. We elected to use accuracy and not reaction time to measure visual recognition learning 
for three reasons: (1) an absence of a speed-accuracy trade-off (b = 0.05, p = 0.57; Supplementary 
Information), (1) an absence of a ceiling effect for accuracy (0.55 < accuracy < 0.91), and (3) slightly 
greater individual variability captured by accuracy (SD = 0.09) than by reaction time (SD = 0.06). 
 
Statistical analyses 
 
We were interested in understanding if white matter tracts within the posterior vertical pathway (pArc, 
TPC, MDLFang, MDLFspl) were more predictive of learning than tracts within the dorsal (SLF3, 
SLF1and2) and ventral (ILF, IFOF) cortices and, additionally, we were interested in understanding if the 
tracts that were strong predictors of sensorimotor learning were also predictive of visual perceptual 
learning. We included three additional control tracts, the vertical-occipital fasciculus (VOF), the frontal 
aslant tract (FAT), and the arcuate fasciculus (Arc) to control for the fact that the four PVP tracts are 
vertical tracts while the dorsal and ventral tracts are horizontal. The VOF, FAT, and Arc are vertical tracts 
that connect ventral cortex with dorsal cortex, but they do not directly connect ventral and parietal 
cortices. This resulted in a total of 22 tracts of interest, 11 tracts in the left hemisphere and 11 tracts in 
the right hemisphere. 
 
We used relaxed lasso regression to directly compare among tracts (Figure 2c). We entered the average 
FA for each tract as a predictor in a relaxed lasso model 31,32, resulting in 22 potential predictors, one for 
each tract of interest (see Methods: Tract profiles for the calculation of average FA of each tract). The 
lasso procedure selects predictors that, together, explain the most variance in the response variable but 
is subject to a constraint on the size of the resulting coefficients, effectively shrinking the coefficient 
estimates. The relaxed lasso removes this shrinkage, de-biasing the coefficient estimates. All variables 
were standardized by dividing by their own variance to ensure that the magnitude of the beta estimates 
from the sensorimotor model and the visual recognition model were directly comparable. The best model 
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was selected based on leave-one-out cross-validation. This procedure resulted in two models, one for 
drawing learning and a second for visual recognition learning.  
 
Additionally, we performed a series of simple linear (marginal) regression analysis to complement the 
results of the relaxed lasso analysis. Each model included one tract as the predictor and one behavioral 
measure as the response variable, resulting in 40 simple linear regression models for 20 tracts and 2 
behavioral measures (Supplementary Information). We tested the significance of the beta-value 
assigned to the predictor in each model using t-test with alpha set to 0.05.  
 
All analyses were applied to the additional repeat diffusion data to support replicability and reproducibility 
(see Magnetic resonance image acquisition and procedure). All statistical analyses were conducted 
using Matlab v9.11.10 (R2021b), except for the relaxed lasso analysis that was conducted using R v4.2.1 
through RStudio 2022.02.1 build 461. 
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Supplementary Information 
 
Supplemental materials: Results of relaxed lasso analysis using additional AFQ tracts 
 
To ensure that our results were not affected by our hypothesis driven selection of 22 white matter tracts, 
we conducted our analysis with an extended set of white matter tracts. We included the set of tracts 
segmented by AFQ 1 with the addition of the four posterior vertical tracts 2 from both hemispheres for a 
total of 34 tracts. This analysis, therefore, Included the same 22 tracts as in the main document, with the 
addition of 12 added tracts: uncinate, thalamic radiation, callosum forceps major, callosum forceps minor, 
cingulum, and corticospinal tract. For drawing learning, results were largely consistent with the findings 
using the hypothesis-driven entry of 22 tracts into the relaxed lasso regression: the left pArc and left SLF 
3 were identified as predictors of drawing learning (Supplemental Table 1). However, for visual 
recognition learning, the relaxed lasso regression failed to identify any tracts that predicted visual 
recognition learning where the analysis with the hypothesis-driven entry of 22 tracts into the relaxed lasso 
revealed the left MDLFspl in the original and repeat dataset. 
 
Supplemental Table 1. Models selected for each learning outcome using relaxed lasso regression. 
Response Variable Predictor β S.E. R2 Adj. R2 

      
Drawing learning  Left pArc 0.2803 0.3219 0.0924 0.0727 
      
Drawing learning (repeat dataset) Left pArc 0.2731 0.2926 0.2210 0.1679 
 Left SLF3 0.2170 0.2960 - - 
 Right fronto-thalamic radiation -0.4252 0.3247 - - 
      
Visual recognition learning - - - - - 
      
Visual recognition learning (repeat dataset) - - - - - 
 
 
Supplemental Materials: Simple linear regression to identify tracts that independently predict 
drawing and recognition learning 
 
Simple linear (marginal) regression analyses evaluated the relationship between each learning outcome 
and the microstructure of each tract separately to identify individual tracts (not groups of tracts) that were 
able to explain a significant amount of variance in learning outcomes. A simple linear regression analysis 
was conducted for each white matter tract that was included in the relaxed lasso regressions described 
above and for each learning outcome, resulting in 22 simple linear regressions with drawing learning as 
the dependent variable and another 22 with visual recognition learning as the dependent variable. Model 
significance was evaluated using an F-test with p < 0.05. Results from all significant regressions are 
reported below and in the Supplemental Table 2 and visually displayed with 95% confidence intervals 
in the Supplemental Figure 1. Results from all regressions, including non-significant results, are 
displayed in the Supplemental Table 3. 
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Learning to draw novel symbols: left pArc and left SLF3 
 
The results of the simple linear regression analyses identified the microstructure of only 2 tracts that 
significantly predicted drawing learning: the left pArc and the left SLF3 (Supplemental Table 2). 
Consistent with the results of the relaxed lasso regression, the relationship between each tract and 
drawing learning was positive, such that participants with higher FA were participants who were the 
quickest at learning to draw the novel symbols (Supplemental Figure 3), however neither result passed 
a Bonferonni correction for multiple comparisons, p < 0.05/22, i.e., p < 0.0023. There were no other tracts 
that significantly predicted drawing learning, all ps > 0.05. 
 
Visual recognition learning: no significant tracts 
 
The simple linear regression analyses did not identify any tract that individually predicted visual 
recognition learning in either the original or repeat data set, all ps > 0.05. 

 

 
Supplemental Figure 1. Simple linear (marginal) regression results: Prediction strength of tract microstructure for drawing 
and visual recognition learning. a. Drawing learning. The left pArc and left SLF3 significantly predicted drawing learning. b. 
Visual recognition learning. There were no tracts that significantly predicted visual recognition learning. Frontal aslant (FAT); 
superior longitudinal fasciculus, 1st and 2nd segment (SLF1and2); superior longitudinal fasciculus, 3rd segment (SLF3); 
posterior arcuate fasciculus (pArc); temporal-parietal connection (TPC); middle longitudinal fasciculus connection to the 
angular gyrus (MDLF-ang);  middle longitudinal fasciculus connection to the superior parietal lobe (MDLF-spl); inferior 
longitudinal fasciculus (ILF); inferior fronto-occipital fasciculus (IFOF); vertical occipital fasciculus (VOF). Error bars represent 
95% confidence intervals. • , p < 0.10;  * , p < 0.05. 
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Supplemental Table 2. Relationships between one learning outcome and one tract using simple linear regression.  
Response Variable Predictor β S.E. p  
Drawing learning Left pArc 0.3505 0.1381 0.0146 * 
 Left SLF3 0.2745 0.1418 0.0590 . 
      
Drawing learning (repeat dataset) Left pArc 0.3308 0.1391 0.0216 * 
 Left SLF3 0.2396 0.1432 0.1010 . 
      
Visual recognition learning - - - -  
      
Visual recognition learning (repeat dataset) - - - -  
      
Note: All tracts were tested for each learning outcome; however, only significant simple linear regression models are 
shown here for simplicity. *, p < 0.05; . , p < 0.10.  
 
Supplemental Table 3.  
Relationships between one learning outcome and one tract using simple linear regression. 
 
Response Variable Predictor β S.E. p  
Drawing learning      
 Left pArc 0.3505 0.1381 0.0146 * 
 Left SLF3 0.2745 0.1418 0.0590 . 
 Left FAT 0.0827 0.1469 0.5765  
 Left SLF1and2 0.0937 0.1468 0.5261  
 Left TPC 0.1701 0.1469 0.2530  
 Left MDLFang 0.1617 0.1471 0.2777  
 Left MDLFspl -0.0201 0.1474 0.8922  
 Left Arc 0.2057 0.1443 0.1607  
 Left ILF 0.0593 0.1472 0.6885  
 Left IFOF 0.0042 0.1474 0.9776  
 Left VOF -0.0567 0.1489 0.7052  
 Right pArc 0.1063 0.1467 0.4720  
 Right SLF3 0.0383 0.1473 0.7957  
 Right FAT 0.0134 0.1491 0.9286  
 Right SLF1and2 0.0164 0.1474 0.9119  
 Right TPC 0.1613 0.1455 0.2734  
 Right MDLFang -0.0506 0.1489 0.7356  
 Right MDLFspl -0.0624 0.1472 0.6736  
 Right Arc 0.1514 0.1457 0.3043  
 Right ILF -0.0571 0.1472 0.6997  
 Right IFOF 0.0358 0.1474 0.8091  
 Right VOF -0.0923 0.1468 0.5328  
      
Drawing learning (repeat dataset)      
 Left pArc 0.3308 0.1391 0.0216 * 
 Left SLF3 0.2396 0.1432 0.1010 . 
 Left FAT 0.0841 0.1469 0.5699  
 Left SLF1and2 0.1041 0.1466 0.4816  
 Left TPC 0.1506 0.1474 0.3124  
 Left MDLFang 0.1574 0.1472 0.2908  
 Left MDLFspl -0.0273 0.1474 0.8541  
 Left Arc 0.1785 0.1451 0.2248  
 Left ILF 0.0310 0.1474 0.8344  
 Left IFOF -0.0140 0.1474 0.9247  
 Left VOF -0.0247 0.1490 0.8692  
 Right pArc 0.0959 0.1468 0.5166  
 Right SLF3 0.0201 0.1474 0.8919  
 Right FAT 0.0531 0.1489 0.7228  
 Right SLF1and2 0.0149 0.1474 0.9199  
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 Right TPC 0.1551 0.1457 0.2927  
 Right MDLFang -0.0603 0.1488 0.6871  
 Right MDLFspl -0.0784 0.1470 0.5963  
 Right Arc 0.1447 0.1459 0.3264  
 Right ILF -0.0854 0.1469 0.5637  
 Right IFOF 0.0579 0.1472 0.6961  
 Right VOF -0.0688 0.1471 0.6422  
      
Visual recognition learning       
 Left pArc -0.0409 0.1473 0.7826  
 Left SLF3 -0.1076 0.1466 0.4666  
 Left FAT -0.0740 0.1470 0.6171  
 Left SLF1and2 -0.0376 0.1473 0.8000  
 Left TPC -0.1727 0.1468 0.2457  
 Left MDLFang -0.1101 0.1482 0.4613  
 Left MDLFspl -0.2448 0.1430 0.0936  
 Left Arc -0.0981 0.1467 0.5069  
 Left ILF -0.1832 0.1450 0.2126  
 Left IFOF -0.2017 0.1444 0.1692  
 Left VOF 0.1738 0.1468 0.2426  
 Right pArc 0.0401 0.1473 0.7869  
 Right SLF3 -0.0164 0.1474 0.9121  
 Right FAT -0.0853 0.1485 0.5687  
 Right SLF1and2 -0.0269 0.1474 0.8561  
 Right TPC -0.1020 0.1467 0.4903  
 Right MDLFang -0.1037 0.1483 0.4880  
 Right MDLFspl -0.1494 0.1458 0.3107  
 Right Arc -0.1029 0.1467 0.4863  
 Right ILF -0.1802 0.1450 0.2204  
 Right IFOF 0.0469 0.1473 0.7516  
 Right VOF 0.0773 0.1470 0.6015  
      
Visual recognition learning (repeat dataset)      
 Left pArc 0.0424 0.1473 0.7747  
 Left SLF3 -0.0387 0.1473 0.7940  
 Left FAT -0.0272 0.1474 0.8546  
 Left SLF1and2 -0.0196 0.1474 0.8947  
 Left TPC -0.0527 0.1489 0.7249  
 Left MDLFang -0.0970 0.1484 0.5166  
 Left MDLFspl -0.1909 0.1447 0.1936  
 Left Arc -0.0393 0.1473 0.7909  
 Left ILF -0.0992 0.1467 0.5023  
 Left IFOF -0.1091 0.1466 0.4606  
 Left VOF 0.1938 0.1463 0.1919  
 Right pArc 0.0944 0.1468 0.5233  
 Right SLF3 0.0724 0.1471 0.6249  
 Right FAT -0.0906 0.1485 0.5449  
 Right SLF1and2 -0.0501 0.1473 0.7352  
 Right TPC -0.0595 0.6879 0.1472  
 Right MDLFang -0.0764 0.1486 0.6098  
 Right MDLFspl -0.1141 0.1465 0.4399  
 RightArc -0.0787 0.1470 0.5948  
 Right ILF -0.1058 0.1466 0.4741  
 Right IFOF 0.0484 0.1473 0.1473  
 Right VOF 0.0873 0.1469 0.5553  
NOTE: *, p < 0.05; . , p < 0.10.  
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Supplemental materials: Participants learned to draw and visually recognize symbols during 
training 
 
Drawing is a learning experience that leads to at least two measurable learning outcomes: drawing 
learning and visual recognition learning. First, drawing practice increases the ability to perform the 
drawing task itself. As adults practice drawing forms, such as objects, shapes, or symbols, the drawings 
produced become increasingly recognizable 3. In young children who are just learning to write letters of 
the alphabet, writing a letter of the alphabet becomes easier and faster 4,5 and their productions become 
more legible 6 as they continually practice writing letters. Second, drawing practice leads to changes in 
the visual processing and memory of the concepts or symbols produced 7–12. Practice with drawing 
common objects increased visual recognition of those objects 7 and practice writing pseudo-letters from 
a novel alphabet increased visual recognition for the practiced pseudo-letters 12. As an individual 
practices repeatedly drawing a form, they not only become better at drawing that form but also become 
better at visually recognizing that form. 
 
To ensure that participants did, in fact, learn to draw and also to visually recognize symbols during the 
training session, we performed one-sample t-test on the sensorimotor learning variable (i.e., slope of draw 
duration across trials) to confirm that the slope was less than zero (i.e., negative) and also on the visual 
recognition learning variable (i.e., accuracy) to confirm that it was above chance (i.e., 50%). These 
analyses confirmed that participants did experience an increase in their ability to draw the symbols 
throughout the training session and that they also learned to visually recognize the symbols throughout 
the training session.  
 
Learning to draw novel symbols  
 
Participants became faster at drawing symbols throughout the drawing training session, suggesting that 
participants learned to draw novel symbols during training (Supplemental Figure 2a; left). We measured 
the drawing duration for each symbol drawing trial throughout the 30-minute training session and 
calculated the slope of draw duration over trials. A one-sample t-test on the slope of each participant’s 
drawing durations confirmed that participants’ learning slopes (M = -8.6e-4, SD = 1.2e-3) were significantly 
less than zero, t(47) = 10.05, p = 5.06e-4, demonstrating that participants spent less time drawing symbols 
with each trial that they completed. Additionally, a density histogram of participants’ learning slopes 
demonstrated that the learning slopes for most participants was negative (Supplemental Figure 2a; right). 
 
The speed with which participants drew the symbols increased during drawing training, suggesting that 
participants were learning how to draw the novel symbols during the training session. To our knowledge, 
learning to draw novel symbols during drawing training has not yet been demonstrated in adult subjects, 
although it is certainly an intuitive result. One prior work in adults has demonstrated that the drawn 
productions of common objects became more recognizable with increased practice drawing those objects 
3, consistent with the notion that drawing practice improves drawing ability. Additionally, training studies 
using other sensorimotor learning tasks report similar results: practice with piano playing improves piano 
playing 13,14 and practice juggling improves juggling 15. Notably, increases in the speed of drawing 
occurred without explicit pressure to learn to draw the symbols. We encouraged participants to draw 
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symbols as quickly and as accurately as possible and they were aware that they would be tested on their 
ability to recognize the symbols after drawing, but they were not aware that we were measuring the 
duration of their drawings to estimate drawing learning.  
 
Visual recognition learning  
 
Participants performed the visual recognition test with above-chance accuracy, suggesting that 
participants learned to visually recognize the symbols during production training (Supplemental Figure 
2b; left). A one-sample t-test confirmed that participants’ accuracy during the recognition test (M = 0.76, 
SD = 0.09) was significantly above chance (i.e., 50%), t(47) = 12.12, p = 4.49e-16, demonstrating that 
their responses during recognition testing were not likely due to random guessing. Additionally, we 
visualized reaction times for each participant (Supplemental Figure 2b; right) and performed a simple 
linear regression that revealed no significant relationship between accuracy and reaction time, suggesting 
the absence of a speed-accuracy trade-off (R2 = 0.048, beta = 0.05, p = 0.57). 
 

 
Supplemental Figure 2. Behavioral results. a. Participants learned to draw the symbols. The draw duration across symbols 
decreased over the course of the production training (left),  t(47) = 10.05, p = 5.06e-4. The white line is the slope of draw duration 
across trials for all participants. Each non-white line is the linear fit of draw duration across trials for a single participant. The 
slope of the linear fit of draw duration across trials was negative for nearly all participants (right), indicating that the majority of 
participants learned to draw the novel symbols during training. b. Participants learned to recognize the symbols. Participants 
visually recognized the symbols with above-chance accuracy after production training (left), t(47) = 12.12, p = 4.49e-16, 
suggesting that participants learned to recognize the trained symbols. Each dot represents the proportion correct during the 
visual recognition test for each individual participant. Average reaction time is also displayed for each individual participant 
(right). Error bars represent standard error across correct trials. For both a and b, individual subjects are color coded and 
represented only once per plot.  
 

Prior work has demonstrated that drawing is beneficial for visual recognition learning 7–12, and our results 
are consistent with the results of these prior studies. In the current study, participants were asked to draw 
symbols that they had never seen before and were then tested on their ability to visually recognize those 
symbols. Participants recognized symbols with above chance accuracy after drawing training 
(Supplemental Figure 2b), suggesting that the drawing training contributed to visual recognition 
learning. However, we did not explicitly manipulate the drawing training and are, therefore, unable to 
conclude that the drawing training affected visual recognition learning in this study. The drawing training 
was a copy task in which a typed symbol remained on the screen as a model while participants copied 
the symbol. It is possible that the above chance recognition accuracy after drawing training resulted from 
exposure to the model symbol and not the drawing training. Because these were novel symbols, any 
exposure to the symbols would be expected to lead to above-chance recognition accuracy. 
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Although it is possible that the above chance recognition accuracy observed after training resulted from 
only the visual experience of seeing the model symbol, it is highly likely that some of the recognition 
learning observed after training resulted from drawing. First, prior work has demonstrated that drawing 
experience facilitates visual recognition of the items that were drawn more than visually perceiving typed 
symbols 9–12,16,17 and more than other motor activities, such as typing 9,10. Second, although participants 
may have learned to visually recognize the symbols from seeing the model symbol, prior research has 
demonstrated that the act of drawing the symbol has its own effect on visual recognition. In pre-post 
training studies that have included a model symbol for copying, drawing the symbol beneath a model 
symbol increased visual recognition more than watching someone else draw the symbol beneath a model 
symbol, drawing the symbol using a pen without ink beneath a model symbol, watching a symbol unfold 
on a screen as if being drawn beneath a model symbol, or viewing a static handwritten version of the 
symbol beneath a model symbol 12,17. Thus, although we did not include a control condition in this study 
to determine that the recognition learning was not simply a consequence of exposure to the model symbol 
during training, prior work using similar study designs suggests that at least some of the recognition 
learning resulted from drawing.  
 
No significant relationship between learning to draw and learning to visually recognize  
 
A simple linear regression was used to determine if the learning rate of symbol drawing was related to 
visual recognition learning. The predictor was the slope of the draw duration across trials during production 
training (Figure 4a; left) and the response variable was accuracy (Figure 4b; left). We also tested to see if 
the slope of draw duration across trials was related to reaction time (Figure 4b; right). We tested the 
significance of the model using an F-test with alpha set to 0.05. 
 
We conducted a simple linear regression analysis to determine if the participants who were quicker at 
learning to draw symbols were also the participants who were better able to recognize the symbols after 
drawing. Surprisingly, we observed no significant relationship between learning to draw and learning to 
visually recognize symbols. Drawing learning was not related to visual recognition learning. A simple linear 
regression revealed that the learning slope of symbol drawing duration was not a significant predictor of 
visual recognition learning, as measured by either accuracy (R2 = 0.019, beta = 0.05, p = 0.72) or reaction 
time (R2 = 0.014, beta = -0.07, p = 0.55) (Supplemental Figure 4). We followed these results with a linear 
mixed-effects analysis that included random effects for symbol and participant and found similar results. 
The addition of random effects for symbol and participant significantly improved the model fits; however, 
the relationship between draw duration slope on visual recognition performance remained non-significant, 
all ps > 0.05. 
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Supplemental Figure 4. Relationships among behavioral measurements. a. Visual recognition learning: no speed-
accuracy trade-off. The relationship between accuracy and reaction time was not significantly different from zero, b = 0.05, 
p = 0.57, suggesting that no speed-accuracy trade-off occurred. b. Non-significant relationship between drawing and 
recognition learning. The slope of draw duration over trials was not related to visual recognition accuracy, b = 0.13, p = 
0.38, or reaction time, b = -0.13, p = 0.38, suggesting that participants who were better at learning to draw the symbols were 
not the same participants who were better at recognition.  

 
 


