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Abstract

Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue

microstructure measurements; however, high b-value DWI images contain high noise levels

that can overwhelm the signal of interest and bias microstructural measurements. Here, we

propose a simple denoising method that can be applied to any dataset, provided a low-

noise, single-subject dataset is acquired using the same DWI sequence. The denoising

method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning

to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to

high-noise datasets from other subjects. We validated the 1D-CNN denoising method by

first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to

the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simu-

lated DWI data. Using the same DWI acquisition but reconstructed with two common recon-

struction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and

high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data

collected from human subjects showed promising results in three domains: DWI images, dif-

fusion metrics, and tractography. In particular, the denoised images were very similar to a

low-noise reference image of that subject, more than the similarity between repeated low-

noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the

1D-CNN method in two practical examples to reduce noise from parallel imaging and simul-

taneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple,

effective denoising method for DWI images that overcomes some of the limitations of cur-

rent state-of-the-art denoising methods, such as the need for a large number of training sub-

jects and the need to account for the rectified noise floor.
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1. Introduction

Neuroanatomical studies rely heavily on diffusion weighted imaging (DWI) sequences because

they can provide researchers with estimates of myelinated brain tissue properties in vivo. The

general approach is to model the diffusion signal and to use parameters of the model fit to

infer characteristics about the biological properties of the underlying brain tissue. The earliest

and most widely used model is the six-parameter tensor model (i.e. DTI) [1, 2]. A growing

body of work is introducing increasingly complex diffusion models with additional parameters

that allow researchers to obtain estimates of more nuanced biological properties (e.g., [3–6]).

These higher order diffusion models show much promise for advancing our knowledge of the

biological properties of brain tissue in living subjects.

Higher order diffusion models are more susceptible to the influence of noise than the stan-

dard tensor-based diffusion model because they incorporate DWI images that contain a weak

signal. DWI images are collected at a specific diffusion gradient strength, or b-value. The larger

the b-value, the higher the diffusion weighting, and the weaker the signal available in the DWI

image. The standard tensor-based diffusion model can be fitted using DWI images collected at

a b-value equal to 1000 s/mm2 where the signal is sufficiently strong to overcome several

sources of noise. However, the more recently developed higher order diffusion models, such as

the models used in Diffusion Kurtosis Imaging (DKI) [7], Mean Apparent Propagator (MAP)

MRI [8], and the Neurite Orientation Dispersion and Density Index (NODDI) [6], incorporate

additional DWI images collected at a higher b-value, such as 2500 s/mm2. The additional

higher b-value images contain a weak signal that leads to a more prominent rectified noise

floor [9] that, together with the noise present in the image, cause adverse effects on the diffu-

sion metrics derived from these higher order models [10]. Therefore, care must be taken to

reduce the effect of noise and the rectified noise floor in DWI images.

Modifications to the diffusion sequence have been proposed to reduce the effects of noise to

more effectively capture the weak signal observed at higher b-values. One approach is to modify

the reconstruction method by adjusting the coil combination scheme. In the case of the multi-

channel phased array head coils that are often used in DWI-based neuroanatomical studies, the

standard coil combination method is the sum-of-squares (SoS) method [11]. The SoS method

weights each channel of the head coil by the pixel value in the channel and can have the unwanted

effect of a rectified noise floor when the signal-to-noise ratio (SNR) is small, which becomes espe-

cially problematic at high b-values when the signal is relatively low. Replacing the SoS coil combi-

nation method with a method that incorporates phase information from the coils, such as the

adaptive combine (AC) [12] or sensitivity encoding-based (SENSE1) [13] methods, lowers the

rectified noise floor, effectively increasing the signal-to-noise ratio (SNR) and facilitating the

detection of weak signals. Such modifications are important for recovering the diffusion signal

and are particularly important for recovering the diffusion signal at high b-values.

The noise floor problem can also be addressed by post-processing methods that are applied

after the MRI data have been reconstructed, such as signal transformational frameworks [10,

14–16] or denoising procedures [14, 15, 17–22]. For instance, the signal-transformational

framework reduces the effects of the noise floor by mapping the noisy non-Central Chi signals,

such as the Rician distribution often observed in DWI, to noisy Gaussian signals [23]. A criti-

cal step of the signal-transformational approach is obtaining the first moment of the non-Cen-

tral Chi distribution. However, the first moment can only be coarsely estimated through either

parametric fitting or spline smoothing of the time course of each voxel. The necessarily coarse

estimation of the first moment might introduce bias into the models [10]. An alternative

method is to account for the non-Central Chi distribution when fitting diffusion metrics; how-

ever, this method can significantly increase the complexity of modeling [24].
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The most common post-processing method used to reduce the effects of noise in DWI

images is denoising that attempts to reduce the thermal noise in the DWI images. Denoising

procedures for DWI images have evolved rapidly in the last decade. The early DWI denoising

approach was based on edge-preserved smoothing, such as adaptive smoothing [14, 15] and

non-local means [17, 18]. These methods are typically applied on each individual DWI image.

Although they are effective at reducing the noise, they tend to blur the images and introduce

errors in computing diffusion metrics [20]. The current state-of-the-art methods are based on

principal components analysis (PCA) [19, 20] and assume sufficient redundancy of DWI data

such that only a number of components are needed to represent signal-related variations while

the remaining components can be removed as noise. The PCA procedure is often effective in

situations where the noise is invariant in the temporal domain, i.e., across DWI volumes, yet

fails to effectively address the noise floor effect. For instance, the MP-PCA [20] method fails to

reduce the influence of noise amplification in the standard SoS reconstruction [21]. In addi-

tion, it is very tricky to set the right threshold to remove the “noisy” component [22]. Although

a recent modification of the MP-PCA method resulted in better noise reduction than the origi-

nal MP-PCA procedure, this recent modification is computationally intensive and not readily

implemented on existing data because it is applied to the complex MRI data before reconstruc-

tion to avoid complications with the rectified noise floor [25]. Another denoising method,

Patch2Self, was proposed to outperform MP-PCA in low-noise datasets by exploiting the sta-

tistical independence of noise [25]. However, the simulation result reveals similar poor perfor-

mance as MP-PCA at the very low SNR (e.g., < 10) typically observed in the high b-value DWI

images used for higher-order modelling [26]. Therefore, a denoising procedure that can

address the rectified noise floor problem in DWI images is needed–one that can be readily

implemented on existing data for both high, low, and very low SNR images.

Deep Learning (DL) denoising methods have the potential to overcome some of the limita-

tions of the common denoising technique. DL models have achieved huge success in image

denoising [27], as well as other applications, such as speech recognition, object detection, and

genomics [28]. Several DL-based methods have been proposed for denoising MRI data, such

as convolutional neural networks (CNN) or generative adversarial networks (GAN) [29–33].

One advantage of the DL approach over the PCA approach is that the DL denoising procedure

can deal with complex noise behavior [27]. This is particularly important for DWI because

DWI datasets contain many images with different image intensities that can have different

noise characteristics.

Current DL denoising methods in MRI are mainly applied in the image domain and are

aimed at denoising a single image, such as an anatomical image, and, consequently, have been

developed in ways that make their application to DWI data impractical. Applying a DL model

to DWI data would require a model to be trained for each image in a DWI dataset. Thus,

applying the current DL denoising methods to DWI data with multiple b-values (i.e., multi-

shell data) would require a large amount of training data and the training process can be very

time consuming. To overcome this problem, recently a method based on a deep image prior

was proposed to denoise multiple DWI images simultaneously [34]. While this recently pro-

posed method does reduce the computation time for training, it remains very computationally

intensive if the number of DWI images is large (e.g., greater than 30). Given that the multi-

shell DWI data often acquired for higher-order models routinely have 60 or more images, this

method remains computationally intractable for most researchers.

In this work, we adapted a current DL denoising method for use with DWI data by applying

the method to DWI data in the temporal domain, i.e., the time series of the voxels. This

approach has two advantages over the more common approach of denoising in the image

domain. First, denoising in the temporal domain requires less data than denoising in the
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image domain because the time course of each voxel is used as a training sample. This makes

each voxel a training sample, instead of making each subject a training sample, effectively

reducing the amount of required training data to the training required for only one DWI data-

set. Second, denoising in the temporal domain is also more likely to retain coherence of the

time series for each voxel than denoising in the image domain, in which volumes collected at

different timepoints are denoised separately. Retaining coherence of the time series is critical

for computing diffusion metrics because the entire time series of a voxel is typically used in dif-

fusion models.

To evaluate this proposed denoising procedure, we first validated the method on simulated

DWI data. Then, we evaluated the ability of the method to reduce noise in DWI data after SoS

reconstruction, i.e., SoS-related noise. We chose to test our method on SoS-related noise for

two reasons: first, current existing denoising methods fail to mitigate the noise floor in high b-

value images from SoS reconstruction; second, one can simultaneously reconstruct the image

using SENSE1 to serve as the ground truth for training purposes. Finally, we show two possible

applications of our method in obtaining low-noise DWI data from deep learning on high-

noise DWI data. The first application aims to reduce noise associated with GRAPPA [35]; the

second application aims to reduce noise associated with simultaneous multi-slice acquisition

(SMS) [36, 37].

2. Materials and methods

2.1 The CNN network and optimization of hyper-parameters

Inspired by the 1D convolutional neural network (CNN) for denoising speeches [38, 39], we

constructed a simple 1D-CNN model that has five layers, including two convolutional layers,

each followed by a max-pooling layer, and a dense layer (Fig 1). The first convolutional layer

was given an input of the ‘noisy’ high-noise image and consisted of 16 one-dimensional filter-

ing kernels of size 16. The second convolutional layer consisted of 32 one-dimensional filtering

kernels of size 8. The ReLu activation function was used in both convolutional layers. There

Fig 1. Schematic drawing of the architecture of the 1D CNN model for denoising. “16x1x16” means the dimension of convolutional operation: kernel

size = 16, depth = 1, number of filters = 16.

https://doi.org/10.1371/journal.pone.0274396.g001
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was 1 max-pooling layer that had a kernel size of 2 with stride 2. In the dense layer, the

extracted features of the high-noise image were mapped to the low-noise reference image (Fig

1). The model was implemented in Tensorflow v1.14 [40] and python 3.7.3 on a computer

with Intel i7-10700 CPU, 32G memory, and Nvidia RTX 2060 GPU.

The CNN model uses a stochastic gradient descent algorithm for optimization. This model

includes several parameters that, in practice, should be optimized for any specific DWI dataset,

namely the number of epochs, learning rate, and batch size. The number of epochs is the num-

ber of times that the entire training dataset passes through the model and should be large

enough to ensure that the model converges to a point that the error from the model is mini-

mized. The learning rate determines the step size of updating the internal model parameters

and needs to be chosen properly to ensure that the training is stable and avoids local minima.

The batch size is the number of samples put into the model at one time in the computation

that updates the internal model parameters. The updating of the internal model can affect the

model error for a specific learning rate.

We selected the number of epochs, learning rate, and batch size empirically based on the

training on in vivo data described in 2.2.2. We kept the number of epochs stable at a high

enough value to allow the model to converge to a solution and manipulated two parameters,

learning rate and batch size, to find optimal learning parameters. First, we determined the

appropriate number of epochs based on a best guess learning rate of 0.001 and batch size of

6000 empirically. We found that the error of the model decreased quickly and stabilized after

6000 epochs for all our data. To be safe, we set the number of epochs to 20000. Second, we

determined the optimal learning rate and batch size for the model. We tested learning rate and

batch size together because learning rate and batch size often interact in the CNN’s learning

procedure. We tested six values for the learning rate [0.00025, 0.0005, 0.001, 0.002, 0.004,

0.008] and four values for the batch size [3000, 6000, 9000, 12000], resulting in 24 tests. For

each test, we trained a model on 75% of the voxels from a DWI dataset and, after 20000 epochs,

we applied the resulting model to the remaining 25% test voxels. For each combination of

learning rate and batch size, the root-mean-square error (RMSE) between the dSoS image and

the SENSE1 image in the testing set was used as a measure of performance. We found the opti-

mal learning with the best learning rate of 0.001 and batch size of 6000 (see S1 Fig in supple-

mentary material).

2.2 Validation of denoising technique

2.2.1 Validation using simulated data. Design. We simulated DWI data to validate the

1D-CNN method for denoising DWI datasets. We simulated a noise-free ground truth and

added Gaussian noise to complex MRI data to create both a low-noise and a high-noise dataset

to evaluate 1D-CNN denoising for various levels of noise. We then applied both 1D-CNN and

MP-PCA [20] denoising to both the low-noise and high-noise datasets to validate the

1D-CNN denoising method against a commonly employed denoising procedure. The design

is depicted in Fig 2A. We were then able to compare among seven DWI datasets: (1) a noise-

free ground truth, (2) low-noise DWI data with SNR = 30, (3) high-noise DWI data with

SNR = 10, (4) low-noise after 1D-CNN denoising, (5) high-noise after 1D-CNN denoising, (6)

low-noise after MP-PCA denoising, and (7) high-noise after MP-PCA denoising.

Data synthesization. We generated five datasets to validate the 1D-CNN procedure for

denoising DWI data: (1) a noise-free ground truth, (2) low-noise DWI data with SNR = 30 to

be used for model training, (3) high-noise DWI data with SNR = 10 to be used for model train-

ing, (4) low-noise DWI data with SNR = 30 to be used for model testing, (5) high-noise DWI

data with SNR = 10 to be used for model testing. Four slices of noise-free DWI images were
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simulated based on the DW-POSSUM framework [41], with 4 volumes at b-value = 0 s/mm2

(b0), 90 diffusion directions at b-value = 1000 s/mm2 (b1000) and 90 diffusion directions at b-

value = 2000 s/mm2 (b2000). To generate the low-noise and high-noise DWI datasets, Gauss-

ian noise was added to the real and imaginary channels of the noise-free ground truth using an

eight-channel coil model followed by adaptive coil combine. For simplicity, we did not intro-

duce motion, eddy current distortion, or physiological noise into the simulated datasets.

Data processing: 1D-CNN. We performed two training procedures, one for the simulated

low-noise DWI data and the other for the simulated high-noise DWI data, so that the image

pairs used for training the 1D-CNN models were: (1) low-noise DWI data and the noise-free

ground truth and (2) high-noise DWI data and the noise-free ground truth. Both 1D-CNN

models were trained with the following training parameters: 20000 epochs, learning rate of

0.001, and batch size of 6000. The model trained with the low-noise dataset was applied to the

held-out low-noise DWI dataset that was simulated for testing. The model trained with the

high-noise DWI dataset was applied to the held-out high-noise DWI dataset that was simu-

lated for model testing.

Data processing: MP-PCA. MP-PCA denoising was applied to the simulated low-noise and

high-noise DWI data using the “dwidenoise” command in MrTrix3 (https://www.mrtrix.org/

). All options were default except for “extent”, whose default setting was changed to 9×9×3

from 9x9x9 to account for our simulated data including only 4 slices.

Fig 2. A. We simulated a noise-free ground truth dataset (1) and added noise to create a low-noise dataset with SNR 30 (2) and a high-noise dataset with SNR

10 (3) to evaluate 1D-CNN denoising. The low-noise and high-noise simulated datasets were both denoised using 1D-CNN and MP-PCA, resulting in four

additional datasets: low-noise after 1D-CNN denoising (4), low-noise after MP-PCA denoising (5), high-noise after 1D-CNN denoising (6), and high-noise

after MP-PCA denoising (7). B. Denoising SoS-related noise using SENSE1 reference data. MRI scans were acquired from 3 subjects for denoising validation.

There are two identical runs, each consisting of one T1w scan, two DWI scans with opposite phase encoding directions (DWI-AP and DWI-PA). Each DWI

scan is constructed with SoS and SENSE1 coil combines, respectively to generate two sets of images.

https://doi.org/10.1371/journal.pone.0274396.g002

PLOS ONE Denoising diffusion weighted imaging data using convolutional neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0274396 September 15, 2022 6 / 24

https://www.mrtrix.org/
https://doi.org/10.1371/journal.pone.0274396.g002
https://doi.org/10.1371/journal.pone.0274396


Calculation of diffusion metrics. Diffusion metrics were estimated for all seven comparison

images (see Validation using simulated data: Design). Tensor-based diffusion metrics were

estimated in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) using the weighted least squares

option. NODDI-based diffusion metrics were estimated using the NODDI Matlab

toolbox (http://mig.cs.ucl.ac.uk/index.php). We focused on fractional anisotropy (FA), mean

diffusivity (MD), intra-cellular volume fraction (ICVF), and orientation dispersion index

(ODI) when evaluating the 1D-CNN denoising method.

2.2.2 Validation using in vivo data. Ethics statement. This study involves a number of

human subjects. The study was approved by the institutional ethical review board of Indiana

University. Written informed consent was obtained from all participants.

Design. To validate the 1D-CNN denoising method using in vivo data, we took advantage of

the difference in noise levels that result from different reconstructions of the k-space data into

image space. More specifically, Sum-of-Squares (SoS) reconstruction of DWI images results in

images with higher noise than SENSE1 reconstruction [13] and, crucially, the high-noise and

low-noise pair are derived from the exact same image.

Three human participants were recruited. We collected two DWI images for each subject.

The first image was reconstructed using both the sum-of-squares (SoS) and also the SENSE1

coil combination methods, resulting in an SoS and SENSE1 reconstruction of the same image.

The second image was reconstructed using only the SENSE1 coil combination method and

was used as a test-retest repeat of the SENSE1 reconstruction of the first image. We then

applied 1D-CNN denoising to the SoS image to generate a denoised SoS image (dSoS). This

procedure resulted in four comparison datasets: (1) SoS, (2) SENSE1, (3) dSoS, and (4)

SENSE1-repeat.

We took several steps to test the effects of 1D-CNN denoising on diffusion metrics in in
vivo data. First, we computed FA and MD from the tensor model using all DWI images. Sec-

ond, we computed OD and ICVF from the NODDI model to evaluate the effects of the denois-

ing procedure on higher-order diffusion models. Third, we estimated each metric, FA, MD,

OD, and ICVF, in the gray matter and white matter separately. As the DWI signal attenuation

from diffusion weighting varies with tissue types, which ultimately affects the SNR, it is worth

investigating if the effectiveness of 1D-CNN denoising procedure was dependent on the tissue

type. Finally, we tested the performance of 1D-CNN by visually inspecting the images of each

diffusion metric calculated from SoS, dSoS, and SENSE1 data, plotting histograms of each met-

ric calculated from SoS, dSoS, and SENSE1 data, and computing correlations between the dif-

fusion metrics calculated from the SENSE1 data and the SoS and dSoS data. Given that SoS-

related noise was expected to be particularly problematic at higher b-values, we expected the

denoising procedure to impact FA/MD and ICVF estimates derived from multi-shell data that

contains high b-value images. We expected the histogram and correlation analyses to demon-

strate that the proposed denoising procedure results in diffusion metrics that are more similar

to the metrics computed on the SENSE1 standard than metrics computed on the original SoS

data and, further, than metrics computed on a SENSE1 repeat.

Data acquisition. We collected DWI data from three subjects using the Human Connec-

tome Project (HCP) Lifespan protocol [42] on a Siemens 3T Prisma (Siemens Healthineers,

Erlangen, Germany). The procedure began with one anatomical T1w image followed by a

series of DWI images and a repeat of the T1w and diffusion images. See Fig 2 for details of the

DWI data acquisition procedure. T1w images were acquired using the 3D MP-RAGE pulse

sequence: TR/TE = 2400/2.3 ms, TI = 1060 ms, flip angle = 8, matrix = 320x320, band-

width = 210 Hz/pixel, iPAT = 2, resulting in 0.8 mm isotropic resolution. DWI images were

collected in both AP and PA phase encoding directions with the following parameters: TR/

TE = 3470/87 ms, 72 slices, 1.5 mm isotropic resolution, 37 gradient directions with b-
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value = 1000, 2500 s/mm2 plus 6 b0 images, resulting in a total of 80 images, SMS acceleration

factor = 4. In addition, we collected one repetition of the AP and PA DWI images for each sub-

ject. Crucially, each DWI images was reconstructed with both SoS and SENSE1 [13] coil com-

bination methods so that the SoS and SENSE1 data used for the model training and testing

(described below) originated from the same k-space data.

Anatomical image processing. We applied standard preprocessing steps to the T1w images.

Anatomical images were aligned to the AC-PC plane with an affine transformation using HCP

preprocessing pipeline [43] as implemented in the HCP AC-PC Alignment App on brainlife.io

(bl.app.99) to the standard MNI152 adult template. AC-PC aligned images were then seg-

mented using the Freesurfer 6.0 [44] as implemented in the Freesurfer App on brainlife.io (bl.

app.0) to generate the cortical volume maps with labeled cortical regions according to the Des-

trieux 2009 atlas [45]. We collected on an additional repeat T1w image for each subject.

Diffusion image processing. Processing of the DWI data occurred in three steps before the

data were used to calculate various diffusion metrics and run fiber tracking. First, we applied

minimal preprocessing to the DWI images to prepare them for the training and optimization

procedure. AP phase-encoded and PA phase-encoded images were combined using FSL

Topup & Eddy to correct for susceptibility distortion correction and inter-volume subject

motion (brainlife.app.287). This step combined AP and PA images, resulting in one SoS

image, one SENSE1 image, and one SENSE1 repeat for each subject. A mask of the brain was

extracted from the DWI with b-values equal to 0 s/mm2. All following analyses were conducted

using only voxels within this brain mask.

Second, we trained the 1D-CNN model using the SoS and SENSE1 data of each subject

with the optimal parameters (20,000 epochs, learning rate = 0.001, batch size = 6000), resulting

in three sets of model coefficients, one for each subject. We then applied the trained model

obtained for each subject to the SoS data of the other two subjects separately in a round-robin

style, resulting in two sets of dSoS data for each subject. With the addition of the dSoS data,

data for each subject included one SoS image, one SENSE1 image, one SENSE1 repeat, one

dSoS image that was denoised using the model coefficients of a second subject, and one dSoS

image that was denoised using the model coefficients of the remaining subject.

Third, additional preprocessing steps were applied to each image separately for fiber track-

ing only. Additional preprocessing steps included PCA denoising, Gibbs deringing, bias field

correction, and Rician noise removal available in the Mrtrix3 preprocessing pipeline [46] as

implemented in the Mrtrix3 Preprocess App on brainlife.io (bl.app.68). PCA denoising and

Gibbs deringing procedures were performed first. The preprocessed DWI data and gradients

were then aligned to each subject’s ACPC-aligned anatomical image using boundary-based

registration (BBR) in FSL [47]. We included PCA denoising for two reasons. 1) It is in the stan-

dard processing pipeline for fiber tracking and all the images (including SENSE1 and dSoS)

are noisy. 2) It is independent of 1D-CNN denoising.

Calculation of diffusion metrics. To evaluate the effect of denoising on tensor-based diffu-

sion metrics and diffusion metric derived from higher order diffusion models, we fit both the

tensor model [2] and the Neurite Orientation Dispersion and Density Index (NODDI) model

[6] to the processed DWI data. Fractional anisotropy (FA) and mean diffusivity (MD) were

estimated from the tensor model in FSL using the weighted least square option. We measured

intra-cellular volume fraction (ICVF) by fitting the NODDI model on multi-shell data using

the NODDI Matlab toolbox developed by UCL Microstructure Imaging Group (http://mig.cs.

ucl.ac.uk/index.php).

Tractography. To evaluate the effect of denoising on tractography, tractography was per-

formed on each DWI dataset to generate streamlines. We used constrained spherical deconvo-

lution (CSD) to model the diffusion tensor for tracking [48, 49]. Tracking with the CSD model
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fit was performed probabilistically using the tractography procedures provided by Mrtrix3

Anatomically constrained Tractography (ACT) [50, 51] implemented in brainlife.io (bl.

app.101). We generated 150000 streamlines at Lmax = 8 and maximum curvatures = 35 degrees.

The tractogram was then segmented into major white matter tracts using a recently developed,

automated segmentation approach [52] implemented in brainlife.io (brainlife.app.188).

Streamlines that were shorter than 10 mm or longer than 200 mm were excluded. Streamlines

that were more than 4 standard deviations away from the centroid of each tract and/or 4 stan-

dard deviations away from the tract’s average streamline length were considered aberrant

streamlines and were removed using the Remove Tract Outliers App on brainlife.io (brainlife.

app.195). Streamline counts were obtained using the Tract Statistics App on brainlife.io (brain-

life.app.189). Note that because all comparisons were within-subjects, fixing the whole brain

streamline count is equivalent to fixing the streamline density and renders streamline count a

viable metric to compare among methods. See Table 1 for more information on the Brainlife

applications used.

To evaluate the effect of 1D-CNN denoising on tractography, we visually inspected the

acquired tractograms and counted the number of streamlines in several major white matter

tracts and calculated the difference in the streamline counts for these tracts between the gold

standard SENSE1 reconstruction and the other DWI images using the multi-shell data: SoS,

dSoS, and the SENSE1 repeat. Because the noise in DWI data blurs the orientation dispersion

function (ODF), resulting in lower FA values and less accurate tractography, we expected that

tractography would perform best in the SENSE1 images followed by the dSoS images and then

the original SoS image. We, therefore, expected the SENSE1-dSoS difference would be smaller

than the SENSE1-SoS difference, suggesting that 1D-CNN denoising positively affected

tractography.

2.3 Application

2.3.1 Application examples. The high-noise and low-noise dataset pairs used in the simu-

lation and in vivo studies described above came from the same base image; however, it is likely

in human subject research that the high-noise and low-noise dataset pair will come from dif-

ferent base images. To assess the feasibility of the 1D-CNN method for denoising high-noise

DWI data using a low-noise dataset derived from a different base image, we conducted two

experiments. In the first experiment, we denoised a high-noise DWI dataset acquired with

GRAPPA [35] by training the 1D-CNN model on a GRAPPA (i.e., high-noise) and a non-

GRAPPA (i.e., low-noise) pair. In the second experiment, the high-noise dataset was an simul-

taneous multi-slice (SMS) [36, 37] dataset while the low-noise dataset was without SMS.

Table 1. Data, description of analyses, and web-links to the open source code and open cloud services used in the creation of this dataset can be viewed in their

entirety here: https://doi.org/10.25663/brainlife.pub.35.

APPLICATION GITHUB REPOSITORY OPEN SERVICE DOI GIT BRANCH

HCP AC-PC ALIGNMENT https://github.com/brain-life/app-hcp-acpc-alignment doi.org/10.25663/bl.app.99 1.4

FREESURFER SEGMENTATION https://github.com/brainlife/app-freesurfer doi.org/10.25663/bl.app.0 1.7

DISTORTION AND MOTION CORRECTION https://brainlife.io/app/5e6e72838a20890d8a8e96af doi.org/10.25663/brainlife.app.

287

master

DMRI PREPROCESSING https://github.com/brain-life/app-mrtrix3-preproc doi.org/10.25663/bl.app.68 1.5

TRACTOGRAPHY https://github.com/brain-life/app-mrtrix3-act doi.org/10.25663/bl.app.101 1.3

TRACT SEGMENTATION https://github.com/brainlife/app-wmaSeg doi.org/10.25663/brainlife.app.188 3.3

TRACT CLEANING https://github.com/brainlife/app-removeTractOutliers doi.org/10.25663/brainlife.app.195 1.3

TRACT STATISTICS https://github.com/brainlife/app-tractographyQualityCheck doi.org/10.25663/brainlife.app.189 1.2

https://doi.org/10.1371/journal.pone.0274396.t001
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GRAPPA and SMS were selected because they are normally used in DWI to decrease acquisi-

tion time. The detailed acquisition parameters are shown below.

Experiment 1, GRAPPA. Three subjects were scanned on a Prisma scanner for two consecu-

tive runs with the following parameters: TR/TE = 5400/88.2 ms, 72 slices, 1.5 mm isotropic res-

olution, 37 gradient directions with b-value = 1000, 2500 s/mm2 plus 6 b0 images,

simultaneous multi-slice (SMS) acceleration factor = 2, resulting a total of 80 images. GRAPPA

with acceleration factor 2 (iPAT2) was used in the first run but not in the second run. There-

fore, the SNR of the images in the first run with iPAT equal to 2 is lower than that in the sec-

ond run with iPAT equal to 1.

Experiment 2, SMS. Three subjects were scanned on a Prisma scanner for two consecutive

runs with the following parameters: TR/TE = 3470/87 ms, 1.5 mm isotropic resolution, 37 gra-

dient directions with b-value = 1000, 2500 s/mm2 plus 6 b0 images, resulting a total of 80

images. The SMS option with an acceleration factor of 4 was used in the first run, resulting in

72 slices, but not in the second run, resulting in 18 slices.

2.3.2 Data processing. All images were processed in FSL first for Eddy current/motion

correction. For Experiment 1, the susceptibility-induced distortion was slightly different

between the two runs. For Experiment 2, there was also a slight anatomical mismatch between

the two runs. Therefore, a nonlinear transformation was performed on the low-noise images

to align them with the high-noise ones. The training of 1D-CNN for denoising was between

the low-noise and high-noise datasets of subject 2 and the model was applied to the other two

subjects. Again, we chose learning rate of 0.001 and batch size of 6000. The fitting converged

quickly before reaching 20000 epochs.

3. Results

3.1 Validation of 1D-CNN on simulated data

Fig 3 shows the difference between denoised image and the noisy image as well as the differ-

ence between denoised image and the ground truth of a representative slice with b-value 2000

s/mm2 from the SNR = 10 dataset. MP-PCA removed some noise but was unable to restore the

signal to the ground truth, as manifested in the CSF region. In contrast, 1D-CNN mapped the

noisy image to the ground truth. The structural information in the difference image for

1D-CNN is mainly related to the CSF where the rectified noise is most severe. The non-zero

rectified noise floor in the CSF was mapped to zero. Therefore, the removed noise shows some

structures of the brain. Fig 4 compares the resultant diffusion metrics of FA, MD, and ICVF

for noisy images with SNR 10 and 30, the corresponding denoised images using MP-PCA and

1D-CNN, and the ground truth. The noise floor led to an underestimation of FA and MD and

an overestimation of ICVF that becomes more prominent as SNR decreases. MP-PCA denois-

ing alleviated that effect on FA and MD but not on ICVF. In contrast, 1D-CNN significantly

improved the accuracy of MD and ICVF. At SNR = 30, however, there is little difference

between the results of MP-PCA, 1D-CNN, and uncorrected.

3.2 Evaluation of 1D-CNN on in vivo data

The performance of 1D-CNN was evaluated in the in vivo dataset in three domains: DWI

images, diffusion metrics, and tractography.

In the DWI image domain, the denoised SoS (dSoS) images were compared to the SENSE1

gold standard through visual inspection and also by evaluating the correlation between the

DWI signal in dSoS and SENSE1 images. Visual inspection of the DWI images indicated that

1D-CNN resulted in DWI images that were more similar to the gold standard SENSE1 images

than the original SoS reconstructed images. The denoised SoS (dSoS) images appeared less
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noisy than the original SoS images. A representative slice of the SoS image, the SENSE1 image,

and the dSoS image for one subject are shown in Fig 5A for b = 0 s/mm2, b = 1000 s/mm2, and

b = 2500 s/mm2. The average correlation coefficients between SENSE1 and dSoS images were

Fig 3. Difference (arbitrary unit) between denoised image and original noisy image (top) and the ground truth (bottom) for MP-PCA and 1D-CNN from

simulation.

https://doi.org/10.1371/journal.pone.0274396.g003
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computed for each b-value (Fig 5B). The correlation between SENSE1 and SoS images was

improved after denoising in both low and high b-value images, with high b-value images

improved the most. Notably, the correlations were much greater than those between SENSE1

repeat scans (r = 0.6–0.8).

In the diffusion metrics domain, there was little difference for FA among the SoS, SENSE1,

and dSoS data based on visual inspection of the maps and histograms, as shown in Fig 6. How-

ever, MD, OD and ICVF were positively affected by the denoising procedure. The histograms

revealed that OD and ICVF calculated from the SoS data were overestimated while MD was

underestimated relative to the SENSE1 standard, and that effect was mitigated substantially by

denoising (Fig 6). Comparing the correlations among SoS, SENSE1, and dSoS images revealed

that the SENSE1 data were more highly correlated with the dSoS data (OD: 0.9744 in GM and

0.9790 in WM, ICVF: 0.9592 in GM and 0.9180 in WM) than with the SoS data (OD: 0.9558 in

GM and 0.9615 in WM, ICVF: 0.8529 in GM and 0.8499 in WM) (Table 2).

In the tractography domain, we counted the number of streamlines in several major white

matter tracts and calculated the difference in the streamline counts for these tracts between the

Fig 4. The noisy DWI images (SNR 10 and 30), corresponding denoised images with MP-PCA and 1D-CNN, and the ground truth, along with derived

FA, MD, and ICVF maps of a representative slice from simulation.

https://doi.org/10.1371/journal.pone.0274396.g004
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gold standard SENSE1 reconstruction and the other DWI images using the multi-shell data:

SoS, dSoS, and the SENSE1 repeat. These differences are shown in Fig 7 for nine major white

matter tracts: IFOF (left and right), ILF (left and right), Forceps Major, Arc (left and right),

and SLF 1 and 2 (left and right). The SENSE1-dSoS differences were smaller or no different

than the SENSE1-SoS differences for all tracts and, importantly, the SENSE1-dSoS differences

were never greater than the SENSE1-SoS differences, indicating that the tractography algo-

rithm did not perform worse on the dSoS data than on the original SoS data.

Fig 5. (a) A representative slice of the SoS image, the SENSE1 image, and the denoised SoS (dSoS) image for b = 1000 s/mm2 and b = 2500 s/mm2; (b) The

average correlation coefficients between SENSE1 and dSoS images, and between SENSE1 and SoS images, for gray matter (GM) and white matter (WM). The

dashed lines indicate the magnitude of correlation coefficients between two repeated scans with SENSE1 (SENSE1 inter-scan) as a reference.

https://doi.org/10.1371/journal.pone.0274396.g005
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3.3 Effect of training samples

The proposed denoising procedure requires only data from one subject for training. This is a

strength of the procedure because it allows researchers to perform 1D-CNN denoising without

having to collect an extremely large amount of data. However, training the model on only one

subject presents the potential concern that the model coefficients might receive some bias

related to the training subject’s data such that the application of the trained model to another

subject’s data would effectively bias the second subject’s data towards the training subject. This

would be problematic for the majority of neuroanatomical studies because such studies often

aim to interrogate individual or group differences. If 1D-CNN biases the denoised data

Fig 6. Different diffusion metrics (FA, MD, ICVF, and OD) computed from SoS, SENSE1, and dSoS images showing on a representative slice. The

corresponding histograms are shown in the bottom. For ICVF and OD, the dSoS data (green) is more similar to the gold standard SENSE1 data (blue) than the

original SoS data (red). The benefit of our denoising procedure is most evident in ICVF and OD, the two measures that are derived from higher-order diffusion

models that rely on high b-value images, although some improvement can also be seen in the MD value.

https://doi.org/10.1371/journal.pone.0274396.g006
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towards a single subject, i.e., the training subject, then any real differences present among sub-

jects or between groups would be more difficult to detect.

The impact of this potential bias of the training subject on the denoised image was interro-

gated by computing the correlation coefficients between diffusion metrics of dSoS images

denoised using models trained from different subjects’ data. If the dSoS images are influenced

by the training subject, then we would expect to find a low correlation if the dSoS images were

influenced by the spatial characteristics of the training data because the training data from dif-

ferent subjects are totally independent.

Table 3 lists the correlation coefficients of three diffusion metrics (FA, ICVF, OD) derived

from denoised SoS data of each subject using the other two subjects as training data, respec-

tively. For FA and OD, the correlation coefficients in GM and WM were all greater than 0.99.

For MD, the correlation coefficients were all greater than 0.99 in GM and 0.96 in WM. The

correlation coefficients were slightly lower for ICVF, but the values (> 0.96 in GM and > 0.94

in WM) are still much higher than those between two repeated scans. The corresponding scat-

ter plots of these four diffusion metrics are shown in S2 Fig in the Supplementary Material.

Although the diffusion measures differ with different training dataset, the high correlation

Table 2. Correlations of the tensor-based diffusion metrics (i.e., FA, MD) and NODDI-based diffusion metrics (i.e., OD, ICVF) between SENSE1-SoS, SENSE1-d-

SoS, and SENSE1-SENSE1 repeat.

SENSE1-SOS SENSE1-DSOS SENSE1 –REPEAT

FA (GM) 0.949 0.961 0.924

FA (WM) 0.957 0.964 0.941

MD (GM) 0.817 0.920 0.828

MD (WM) 0.572 0.808 0.719

OD (GM) 0.956 0.974 0.867

OD (WM) 0.962 0.979 0.932

ICVF (GM) 0.853 0.959 0.881

ICVF (WM) 0.850 0.918 0.850

https://doi.org/10.1371/journal.pone.0274396.t002

Fig 7. The difference in the number of tractography streamlines between SENSE1 and SoS, SENSE1 and dSoS, and SENSE1 repetitions for nine bundles:

IFOF (left and right), ILF (left and right), Forceps Major, Arc (left and right), and SLF 1 and 2 (left and right). The x-axis is the average difference in

streamline count between the comparison (i.e., SENSE1-SoS (red), SENSE1-dSoS (blue), SENSE1-SENSE1 repeat (black)). The error bars represent 90%

confidence intervals.

https://doi.org/10.1371/journal.pone.0274396.g007
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coefficients suggest that the choice of subject used as a training dataset has a negligible impact

on denoised images.

3.4 Applications

As denoising validation from simulated data and in vivo data indicated that denoising has little

impact on FA and OD, we only show the effect on MD and ICVF in the two application exper-

iments. Fig 8 shows the original high-noise image, low-noise image, and denoised images

using MP-PCA and 1D-CNN along with derived MD and ICVF maps of a representative slice

in Experiment 1 (iPAT2 vs. iPAT1) for b-value 2500 s/mm2. Similarly, an underestimation of

MD and a ceiling effect of ICVF were observed for high-noise data. These effects were mostly

corrected after 1D-CNN denoising whereas MP-PCA showed little improvement. Fig 9 shows

the original high-noise image, low-noise image, and denoised images using MP-PCA and

1D-CNN along with the derived MD and ICVF maps of a representative slice in Experiment 2

(SMS4 vs. SMS1) for b-value 2500 s/mm2. Again, an underestimation of MD and a ceiling

effect of ICVF were observed for high-noise data that were corrected after 1D-CNN denoising.

1D-CNN denoising not only revealed more details in the low b-value image that were present

in the high b-value images but also made the MD and ICVF values closer to those derived

from the low-noise dataset. In contrast, MP-PCA denoising had little effect on the final results.

4. Discussion

The behavior of noise in DWI images varies across images. For those with high SNR the noise

is exhibited as Gaussian noise; for those with very low SNR (say, < 10), a rectified noise floor

can appear. The rectified noise floor can severely lower the accuracy in estimating diffusion

metrics sensitive to diffusion properties at high b-values, such as ICVF from NODDI, mean

kurtosis from DKI, and various measures from MAP-MRI. Most DWI denoising methods

work well in removing the Gaussian noise but not the rectified noise. Our primary goal was to

develop a practical method for removing noise in DWI data that is not removed adequately by

currently available denoising methods. We were particularly interested in developing a method

that would be effective for multi-shell DWI data that contain high b-values that are required

for higher order diffusion models. Using simulated data and SoS noise in in vivo data as exam-

ples, we demonstrated that a deep learning method was able to correct for the rectified noise

floor in DWI images that cannot be corrected using state-of-the-art DWI denoising methods.

Our method was based on a one-dimensional CNN deep-learning network applied to the time

course of DWI data, substantially reducing the amount of training data required for denoising

relative to current DL denoising procedures. With only one dataset as the training sample (i.e.,

one subject’s worth of DWI data), the 1D-CNN method effectively removes noise for any data-

set acquired the same way as the training data.

The proposed 1D-CNN denoising method is essentially a regression model that fits the

low-noise images from high-noise images rather than fitting the noise. Therefore, it can deal

Table 3. SENSE1-dSoS correlations of diffusion metrics (FA, MD, OD, and ICVF). For the dSoS data used in this table, the model was trained on data that was merged

from the other two subjects. The dSoS data for SUBJ 1, for example, was obtained by applying a model trained on the combined data of SUBJ 2 and SUBJ 3 to SUBJ 1’s SoS

data.

FA MD OD ICVF

GM WM GM WM GM WM GM WM

Subj 1 0.998 0.997 0.995 0.975 0.994 0.995 0.978 0.943

Subj 2 0.990 0.997 0.993 0.978 0.991 0.994 0.981 0.962

Subj 3 0.997 0.997 0.991 0.966 0.991 0.993 0.972 0.941

https://doi.org/10.1371/journal.pone.0274396.t003
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with more complicated noise behavior. The simulation results demonstrated that the ultimate

target of restoring a noisy image to its noise-free reference image can be accomplished with

1D-CNN, a feature that sets it apart from other state-of-the-art denoising methods (e.g.,

MP-PCA). In addition to the simulation results, 1D-CNN reduced the effects of noise in DWI

data collected from human subjects so that the denoised DWI images and subsequently

derived diffusion metrics were more similar to the ground truth than a repeated scan. The

voxel-wise correlations of the image intensity between denoised SoS data (i.e., the denoised

high-noise dataset) and SENSE1 data (i.e., the low-noise dataset) were above 0.95 for all sub-

jects tested, much higher than the correlations between SENSE1 and SENSE1 repeated scans

(Fig 5). Similarly, the voxel-wise correlations between the diffusion metrics computed from

dSoS and SENSE1 data were also very high and always greater than the voxel-wise correlations

between the SENSE1 and SENSE1-repeat scans (Table 2). Both results indicate that the pro-

posed denoising method can substantially reduce noise to a level where the diffusion signal

can be recovered and modelled with as much fidelity as if the DWI data were originally col-

lected with a lower-noise method.

Fig 8. The original high-noise image, low-noise image, and denoised images using MP-PCA and 1D-CNN along with derived MD and ICVF maps of a

representative slice in Experiment 1 (iPAT2 vs. iPAT1) for b-value 2500 s/mm2.

https://doi.org/10.1371/journal.pone.0274396.g008
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We did not observe substantial benefit of 1D-CNN denoising for FA. This is probably

because FA is determined more by the directionality than the diffusion signal at high b-value.

The noise floor is particularly problematic for higher order diffusion models (e.g. NODDI)

that rely on high b-value images. The correlation coefficients of all diffusion metrics were

either marginally or significantly improved after denoising–an effect that was most evident for

measurements obtained using higher order diffusion models (Figs 4 and 7 and Table 2).

Tractography results were generally in line with our expectations that the denoising proce-

dure would improve tractography performance. While the tractograms from SENSE1, SoS,

and dSoS data were visually similar (Fig 7A), the difference in streamline counts between the

SENSE1 standard and dSoS tractogram was smaller or no different than the difference between

the SENSE1 standard and the SoS tractrogram for each tract (Fig 7B). However, these results

also demonstrated that SoS-related noise is not likely problematic for tractography perfor-

mance because the difference in streamline counts between SENSE1, SoS, and dSoS tracto-

grams were very small relative to the total number of streamlines (i.e., < 1%). We had

expected tractography performance to be negatively affected by the SoS-related noise; however,

little to no effect in tractography performance is consistent with our results that demonstrated

Fig 9. The original high-noise image, low-noise image, and denoised images using MP-PCA and 1D-CNN along with derived MD and ICVF maps of a

representative slice in Experiment 2 (SMS4 vs. SMS1) for b-value 2500 s/mm2.

https://doi.org/10.1371/journal.pone.0274396.g009
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little to no effect of SoS-related noise on FA (Fig 6), which is closely related to the directional-

ity of diffusion.

Effect of training data

In theory, the training data must contain all the characteristic time courses of the DWI data to

be denoised, which are related to the tissue microstructure and coil configuration. This

requires a vast amount of training data. One of the advantages of the proposed method is that

it only needs a few DWI datasets because each DWI dataset consists of many training samples

(e.g., ~5×105 for HCP protocol). Although it is possible to use multiple datasets to train the

model, we have shown that even one DWI dataset acquired with the same protocol is adequate

for the training purpose. In addition, although different training data leads to deviated denois-

ing results, as illustrated by the scatter plots of diffusion metrics in S2 Fig, the choice of train-

ing data does not affect the results dramatically, as suggested by the high correlation among

resultant diffusion metrics using different training data for denoising (Table 3). Therefore, in

practice, the training can be carried out using one representative dataset. However, the hyper-

parameters of the model need to be tuned separately for each protocol because the choice of

learning rate and batch size affects the performance of the algorithm using gradient descent

for optimization. We expect different values for the optimal learning rate and batch size for

different acquisition protocols. It seems that for an optimal learning rate, there is some free-

dom in setting the batch size (e.g., learning rate 0.01 and 0.02 in S1 Fig).

Possible applications

The python script for denoising can be downloaded from https://github.com/huchengMRI/

DWI-SoS-denoising. We provided codes for both Tensorflow 1.1 and 2.0. Here we discuss a

few possible applications of 1D-CNN in denoising DWI data.

Parallel imaging techniques have been routinely used in DWI scans to save time, reduce

geometric distortion, and improve spatial resolution despite an SNR penalty [53]. The SNR

penalty is proportional to the square root of the acceleration factor multiplied by a g-factor

that is mainly determined by the coil configuration and acceleration factor [53]. Experiment 1

suggested practical applications of using 1D-CNN to reduce the effect of noise floor in DWI

images with high acceleration factors of parallel imaging. In Experiment 1, we relaxed the TE

value to accommodate both iPAT2 and iPAT1, compromising the benefit of shorter TE from

parallel imaging. To keep the same short TE, a segmented acquisition scheme [54] can be used

to collect a low-noise DWI dataset without using parallel imaging. A segmented acquisition

can also reduce geometric distortion, similar to parallel imaging. Thus, the SNR penalty associ-

ated with DWI images with the high acceleration factors of parallel imaging can be recovered,

at least partially, with the application of 1D-CNN denoising.

Recent development of simultaneous multi-slice (SMS) techniques makes the data acquisi-

tion more efficient with only a slight SNR penalty similar to the g-factor. Experiment 2 sug-

gested that 1D-CNN can also be used to reduce the effect of noise floor in DWI images

acquired with high SMS acceleration factors. The low-noise image data can be acquired with

the same DWI pulse sequence without using SMS. The SNR is higher without using SMS but

only fewer slices can be acquired. Hence, it takes several scans to obtain the same amount of

slices as the high-noise images using SMS. In this application, again, the SNR penalty associ-

ated with DWI images acquired with high SMS acceleration factors may be recoverable with

the application of 1D-CNN denoising.

Another possible application is for high-resolution DWI. One of the challenges for high-

resolution DWI is the noise floor. However, the noise floor problem can be mitigated by
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constructing images from multiple thicker slices shifting in the slice-select direction [55].

Thicker slices have higher SNR than thinner slices. Assuming the noise distribution in the

thick-slice images is Gaussian, which is a good approximation at high SNR, the noise remains

Gaussian in the reconstructed image, which is a linear combination of a series of thick-slice

images. Hence, the reconstructed images can be used as the ground truth for training the

1D-CNN model to correct for the noise floor in normally acquired high-resolution DWI

images.

For all these applications, because the high-noise and low-noise images cannot be recon-

structed from the same acquisition as in the SoS/SENSE1 case, it is critical to minimize the dif-

ference between the high-noise image and low-noise image except for the difference in SNR.

An important post-processing step is to coregister the high- and low-noise datasets so that the

corresponding voxels match well. However, it is not required that the high-noise images and

low-noise images are acquired with the same type of pulse sequences.

Limitations

In the current version of 1D-CNN model, all voxel-wise time courses are used for training the

model, which does not account for noise variation with respect to tissue properties and spatial

locations. An improvement could be made by dividing the image into patches that have similar

noise characteristics and applying 1D-CNN separately on each patch. Another limitation is

that the SENSE1-SoS pair is not an ideal pair of low-noise and high-noise images because they

have different noise distributions (non-central Chi distribution for SoS and Rician distribution

for SENSE1), although it presented an important test-case for validating 1D-CNN denoising

in human subjects because the SENSE1 and SoS datasets were perfectly matched. The model

essentially learn to predict SENSE1-quality data from SoS-quality data. In addition, there is a

possibility of mismatch between the low-noise and high-noise dataset pair. While the SENSE1

datasets and SoS datasets were perfectly matched because they came from the same base

image, it is more common in practice that low-noise and high-noise datasets are acquired sep-

arately. The effect of mismatch needs further investigation.

5. Conclusions

In summary, we have developed a simple 1D-CNN deep learning method to denoise DWI

images and showed promising results in simulation and in an initial test-case with in vivo
DWI data. By acquiring both low-noise and high-noise images of one subject, the trained

model can be used to reduce noise, especially related to the rectified noise floor, in any high-

noise data using the same DWI protocol and effectively convert the noise behavior in high-

noise images to that of low-noise images. This method can shed light on further development

of deep learning based denoising techniques for diffusion imaging.

Supporting information

S1 Fig. Root-mean-square errors in validation as a function of batch size and learning rate

in training. Taking 75% voxels as training set, and the remaining 25% as validation set. After

20000 iterations, we used root-mean-square error as the measure of performance to select the

optimal combination of batch size and learning rate. The area outlined by the dashed white

line are optimized combinations of batch size and learning rate. We selected a batch size of

6000 and a learning rate of 0.001 for our analyses.

(TIF)
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S2 Fig. Scatter plots of four diffusion metrics (FA, MD, OD, ICVF) derived from denoised

data of subject 1 using the DWI data of subject 2 and 3 as training data, respectively.

(PNG)
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